1.Research progress in chemical constituents and processing methods of Aconiti Lateralis Radix Praeparata.
Jia-Hao HU ; Wen-Ru LI ; Qing-Xin SHI ; Cheng-Wu SONG
China Journal of Chinese Materia Medica 2025;50(6):1458-1470
This article aims to study the processing methods by exploring the main chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms. The relevant articles were retrieved from multiple databases with the time interval of 1960-2024, and the chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms of its processing methods were summarized. The review revealed that the chemical constituents of Aconiti Lateralis Radix Praeparata included 32 diester-type alkaloids, 36 monoester-type alkaloids, 43 alkanolamine-type alkaloids, and 8 lipid-type alkaloids. At the same time, other chemical constituents such as water-soluble alkaloids were also studied, and their pharmacological activities were summarized. The toxicity-attenuating mechanisms of the processing methods included constituent loss, hydrolysis, ester exchange, and ion-pair action. The processing methods of Aconiti Lateralis Radix Praeparata have developed from being traditional to modern, with simplified operation and increased retention amounts of active constituents, which have improved the efficacy of processed Aconiti Lateralis Radix Praeparata products and have facilitated the industrial production. However, the existing processing methods of Aconiti Lateralis Radix Praeparata cannot completely solve the problem of possible reduction in efficacy during toxicity attenuation. More toxicity-attenuating mechanisms and lipid-type alkaloids of Aconiti Lateralis Radix Praeparata should be explored, which is expected to reduce its toxicity while retaining its efficacy.
Aconitum/toxicity*
;
Drugs, Chinese Herbal/isolation & purification*
;
Alkaloids/chemistry*
;
Animals
;
Humans
2.Effect of the combination of alkaloids from Euodiae Fructus and berberine in Zuojin Pill on cytotoxicity in HepG2 cells.
Yadong GAO ; An ZHU ; Ludi LI ; Yingzi LI ; Qi WANG
Journal of Peking University(Health Sciences) 2025;57(5):926-933
OBJECTIVE:
To investigate the hepatotoxicity of alkaloids from Euodiae Fructus combined with berberine (BBR) in Zuojin Pill, and to preliminarily explore the possible detoxification mechanism of the combination components.
METHODS:
The combination ratio of components was determined by the maximum concentration (Cmax) of the chemical components in Zuojin Pill. HepG2 cell model was used to investigate the combined toxicity of the hepatotoxic components from Euodiae Fructus, such as evodiamine (EVO) or dehydroevodiamine (DHED), with BBR for 48 h. The experimental groups were set as follows: the vehicle control group, the EVO group, the DHED group, the BBR group, and the combination group of EVO or DHED with BBR. The cell counting kit-8 (CCK-8) method was used to determine the cell viability, and the combination index (CI) was used to determine the combined toxicity of the components. The alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydroge-nase (LDH), and alkaline phosphatase (ALP) activities as well as total bilirubin (TBIL) content in the cell culture supernatant were detected. The protein expression levels of bile acid transporters, such as bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2), were detected by Western blot. The intracellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in HepG2 cells were detected.
RESULTS:
Compared with EVO or DHED group, the combination of EVO 1 μmol/L with BBR 10 μmol/L or DHED 50 μmol/L with BBR 35 μmol/L significantly increased cell viability of HepG2 cells (P < 0.01), with CI values of 77.89 or 4.49, respectively, much greater than 1. Significant decreases in the activities of ALT, AST, LDH, ALP, and TBIL content in the cell culture supernatant were found in both combination groups (P < 0.05, P < 0.01). Compared with the EVO group, the combination of EVO with BBR upregulated the protein expression levels of BSEP and MRP2. Compared with the DHED group, the combination of DHED with BBR significantly downregulated the protein expression levels of BSEP and MRP2 (P < 0.01). Compared with EVO or DHED group, the combination of EVO or DHED with BBR significantly reduced the MDA content in HepG2 cells (P < 0.05, P < 0.01).
CONCLUSION
A certain ratio of BBR combined with EVO or DHED had an antagonistic effect on HepG2 cytotoxicity, which might be related to regulating the expression of bile acid transpor-ters, and reducing lipid peroxidation damage.
Humans
;
Hep G2 Cells
;
Berberine/pharmacology*
;
Drugs, Chinese Herbal/toxicity*
;
Evodia/chemistry*
;
Alkaloids/pharmacology*
;
Cell Survival/drug effects*
;
Multidrug Resistance-Associated Proteins/metabolism*
;
Multidrug Resistance-Associated Protein 2
;
Quinazolines
3.Simultaneous determination and toxicokinetic study of six compounds from Zhachong Shisanwei Pills in plasma of chronic cerebral ischemia rats by LC-MS/MS.
Teng-Fei CHEN ; He HUANG ; Yun-Hang GAO ; Ling SONG ; Han LI ; Bo PENG ; Hong-Ping HOU ; Wei-Ya CHEN ; Jun-Miao CHEN ; Zu-Guang YE ; Guang-Ping ZHANG
China Journal of Chinese Materia Medica 2024;49(21):5932-5943
A liquid chromatography-tandem mass spectrometry method was established and validated for determining the concentrations of costunolide(CO), piperine(PI), agarotetrol(AG), glycyrrhizic acid(GL), vanillic acid(VA), and glycyrrhetinic acid(GA) in rat plasma. This method was then applied to the toxicokinetic study of these six compounds in rats with chronic cerebral ischemia(CCI) following multiple oral doses of Zhachong Shisanwei Pills. Finally, the effects of continuous multiple-dose administration of Zhachong Shisanwei Pills on the liver of CCI rats were investigated. The results showed that after oral administration of different doses of Zhachong Shisanwei Pills, the in vivo exposure of AG, VA, and GA was relatively high, with AUC_(0-∞) values ranging from 604.0-2 494.2, 1 305.4-4 634.5, and 2 177.5-4 045.7 h·ng·mL~(-1), respectively, while the exposure of CO, PI, and GL was relatively low, with AUC_(0-∞) values ranging from 37.8-238.2, 2.4-17.0, and 146.9-408.5 h·ng·mL~(-1), respectively. The C_(max) and AUC_(0-∞) of the six compounds were positively correlated with the administered dose. The T_(max) of PI and AG ranged from 0.3 to 2.0 h, their T_(1/2) ranged from 0.8 to 2.9 h, and their mean residence time(MRT) ranged from 1.0 to 3.7 h. The T_(max) of GL and VA was shorter(0.4-1.9 h), while their T_(1/2)(2.6-5.9 h) and MRT(2.5-8.5 h) were longer. Both CO and GA exhibited a bimodal phenomenon, with T_(max) ranging from 1.6 to 6.6 h, T_(1/2) ranging from 2.8 to 7.7 h, and MRT ranging from 4.1 to 12.9 h. Liver histopathology after 28 days of continuous multiple-dose administration of Zhachong Shisanwei Pills showed that the liver tissue remained normal at a low dose(crude drug 0.8 g·kg~(-1), approximately 5 times the clinical equivalent dose). However, as the dose increased(crude drug 1.1-3.0 g·kg~(-1), 6.9-18.8 times the clinical equivalent dose), varying degrees of liver damage were observed. Blood biochemical tests revealed no significant changes in the serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), alkaline phosphatase(ALP), and total bile acid(TBA) in CCI rats from administration groups 1 to 3(crude drug 0.8, 1.1, 1.5 g·kg~(-1)). However, ALT, AST, ALP, and TBA levels in groups 4 and 5(crude drug 2.1, 3.0 g·kg~(-1)) showed significant increases. This study preliminarily elucidated the toxicokinetic characteristics of the six compounds in Zhachong Shisanwei Pills and their effects on liver tissue in CCI rats, providing data as a reference for clinical use.
Animals
;
Tandem Mass Spectrometry/methods*
;
Rats
;
Drugs, Chinese Herbal/toxicity*
;
Male
;
Rats, Sprague-Dawley
;
Brain Ischemia/blood*
;
Chromatography, Liquid/methods*
;
Polyunsaturated Alkamides/blood*
;
Piperidines/toxicity*
;
Benzodioxoles/toxicity*
;
Alkaloids/blood*
;
Liquid Chromatography-Mass Spectrometry
4.Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine.
Yu-Jie WANG ; Yan WANG ; Pei TAO
Journal of Integrative Medicine 2023;21(3):302-314
OBJECTIVE:
The transformations that occur in diterpenoid alkaloids during the process of sand frying for Chinese herbal medicine preparation have yet to be clarified. This study investigated the structural changes that take place in 3-acetylaconitine during a simulation of heat-processing and evaluated the toxicity and biological activity of the pyrolysis products.
METHODS:
The diterpenoid alkaloid 3-acetylaconitine was heated at 180 °C for 15 min to simulate the process of sand frying. The pyrolysis products were separated using column chromatography, and their structures were investigated using high-resolution electrospray ionization mass spectroscopy and nuclear magnetic resonance spectroscopy. Further, in vivo cardiotoxicity and acute toxicity of 3-acetylaconitine and its pyrolysis products were compared, and the aconitine-induced arrhythmia model was employed to evaluate the antiarrhythmic effect of the pyrolysis products.
RESULTS:
Two new diterpenoid alkaloids, pyroacetylaconitine and 16-epi-pyroacetylaconitine, a pair of epimers at C-16, were isolated. After comparing the structures of these compounds, possible transformation pathways were proposed. Compared with the prototype compound, 3-acetylaconitine, the cardiotoxicity and acute toxicity of the heat-transformed products were significantly decreased. In the biological activity assay, the two pyrolysis products exhibited an effective increase in ventricular premature beat latency, a reduction in the occurrence of ventricular tachycardia, as well as an increase in the rate of arrhythmia inhibition, implying strong antiarrhythmic activity.
CONCLUSION
Compared with 3-acetylaconitine, its pyrolysis products displayed lower toxicity and good antiarrhythmic effects; thus, they have potential for being developed into antiarrhythmic medicines. Please cite this article as: Wang YJ, Wang Y, Tao P. Structural characterization, in vivo toxicity and biological activity of two new pyro-type diterpenoid alkaloids derived from 3-acetylaconitine. J Integr Med. 2023; 21(3): 302-314.
Humans
;
Aconitine/chemistry*
;
Cardiotoxicity
;
Sand
;
Alkaloids/toxicity*
;
Arrhythmias, Cardiac/drug therapy*
;
Diterpenes/toxicity*
5.A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids.
Li MI ; Yu-Chen LI ; Meng-Ru SUN ; Pei-Lin ZHANG ; Yi LI ; Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):505-520
The tubers and roots of Aconitum (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natural products mainly extracted from Aconitum plants, Aconitum alkaloids have complex chemical structures and exert remarkable biological activity, which are mainly responsible for significant effects of Aconitum plants. The present review is to summarize the progress of the pharmacological, toxicological, and pharmacokinetic studies of Aconitum alkaloids, so as to provide evidence for better clinical application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of Aconitum alkaloids were collected from different scientific databases (PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science) using the phrase Aconitum alkaloids, as well as generic synonyms. Aconitum alkaloids are both bioactive compounds and toxic ingredients in Aconitum plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and immune system and anti-cancer effects. Notably, Aconitum alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity, which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux transporters (ETs) are closely related to the low bioavailability of Aconitum alkaloids and play an important role in their metabolism and detoxification in vivo.
Aconitum/chemistry*
;
Alkaloids/toxicity*
;
Biological Availability
;
Phytochemicals/toxicity*
;
Plant Roots/chemistry*
6.Status of content analysis of pyrrolizidine alkaloids in food and herbs.
Yan ZHANG ; Ma SI-QI ; Fei-Fei YANG ; Si JIAN-YONG ; Wu QING ; Yong-Hong LIAO
China Journal of Chinese Materia Medica 2020;45(22):5421-5428
Pyrrolizidine alkaloids(PAs) are a group of naturally occurring alkaloids with a pyrrolizidine skeleton which can be found in about 3% of the world's flowering plants. It is notorious that PAs are cause the hepatoxic and genotoxic-carcinogenic effects by taking PA-containing herbs, food and dietary supplements. In order to control the poisoning caused by PAs, European Medicines Agency has set a limit of intake of PAs from herbal medicinal products at 0.007 μg of 1,2-unsaturated PAs/kg body weight. Nonetheless, a systematic overview of the amount of PAs in the herb has not been provided. Therefore, this paper is to systematically review the current status of PAs content analysis of herbal medicines and foods reported in the literature, and to provide theoretical and experimental support for the safety risk assessment and control of PAs in Chinese herbal medicines.
Food
;
Herbal Medicine
;
Phytotherapy
;
Plants, Medicinal
;
Pyrrolizidine Alkaloids/toxicity*
7.Matrine suppresses lipopolysaccharide-induced fibrosis in human peritoneal mesothelial cells by inhibiting the epithelial-mesenchymal transition.
Yi-Zheng LI ; Xi PENG ; Yun-Hua MA ; Fu-Ji LI ; Yun-Hua LIAO
Chinese Medical Journal 2019;132(6):664-670
BACKGROUND:
Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli) were on the rise. We had previously shown that matrine inhibited the formation of biofilm by E. coli. However, the role of matrine on the epithelial-mesenchymal transition (EMT) in peritoneal mesothelial cells under chronic inflammatory conditions is still unknown.
METHODS:
We cultured human peritoneal mesothelial cells (HPMCs) with lipopolysaccharide (LPS) to induce an environment that mimicked peritonitis and investigated whether matrine could inhibit LPS-induced EMT in these cells. In addition, we investigated the change in expression levels of the miR-29b and miR-129-5p.
RESULTS:
We found that 10 μg/ml of LPS induced EMT in HPMCs. Matrine inhibited LPS-induced EMT in HPMCs in a dose-dependent manner. We observed that treatment with matrine increased the expression of E-cadherin (F = 50.993, P < 0.01), and decreased the expression of alpha-smooth muscle actin (F = 32.913, P < 0.01). Furthermore, we found that LPS reduced the expression levels of miR-29b and miR-129-5P in HPMCs, while matrine promoted the expression levels of miR-29b and miR-129-5P.
CONCLUSIONS
Matrine could inhibit LPS-induced EMT in HPMCs and reverse LPS inhibited expressions of miR-29 b and miR-129-5P in HPMCs, ultimately reduce peritoneal fibrosis. These findings provide a potential theoretical basis for using matrine in the prevention and treatment of peritoneal fibrosis.
Actins
;
metabolism
;
Alkaloids
;
therapeutic use
;
Cadherins
;
metabolism
;
Cells, Cultured
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Epithelium
;
drug effects
;
Fibrosis
;
chemically induced
;
genetics
;
metabolism
;
Humans
;
Lipopolysaccharides
;
toxicity
;
MicroRNAs
;
metabolism
;
Peritoneal Fibrosis
;
drug therapy
;
Quinolizines
;
therapeutic use
8.Stems and leaves of Aconitum carmichaelii Debx. as potential herbal resources for treating rheumatoid arthritis: Chemical analysis, toxicity and activity evaluation.
Ya-Nan HE ; Shui-Ping OU ; Xi XIONG ; Yuan PAN ; Jin PEI ; Run-Chun XU ; Fu-Neng GENG ; Li HAN ; Ding-Kun ZHANG ; Ming YANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):644-652
According to folk usage of Aconitum carmichaelii Debx., the present study was designed to determine the feasibility of the stems and leaves of Aconitum carmichaelii Debx. as a new medicinal resource. Fourteen alkaloids in mother roots, fibrous roots, stems, and leaves of Aconitum carmichaelii Debx. were measured by HPLC-MS/MS. And multivariate analysis methods, such as clustering analysis and principal component analysis, were applied to analyze the difference among various parts. In addition, the acute toxicity, analgesia, and anti-inflammatory tests were carried out. The results suggested that the contents of alkaloids in mother roots and fibrous roots were approximate, but those of leaves and stems were different from mother roots and fibrous roots. The results of the acute toxicity testing demonstrated the toxicity of fibrous root was strongest, and mother roots were slightly less toxic than fibrous roots. The stems and leaves were far less toxic than mother and fibrous roots. In addition, the analgesia and inflammatory tests showed the effects of the various tissues had no difference each other. These results provided a basis for developing new complementary and alternative treatments for rheumatoid arthritis patients. Simultaneously, the approach may also turn wastes into treasure and promote the development of circular economy.
Aconitum
;
chemistry
;
Alkaloids
;
administration & dosage
;
chemistry
;
toxicity
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
toxicity
;
Arthritis, Rheumatoid
;
drug therapy
;
Chromatography, High Pressure Liquid
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
toxicity
;
Female
;
Humans
;
Male
;
Mice
;
Plant Leaves
;
chemistry
;
Plant Roots
;
chemistry
;
Plant Stems
;
chemistry
;
Tandem Mass Spectrometry
9.Carbazole alkaloids isolated from the branch and leaf extracts of Clausena lansium.
Wen-Wen PENG ; Li-Xia ZHENG ; Chang-Jiu JI ; Xu-Gen SHI ; Zhong-Hua XIONG ; Xin-Chen SHANGGUAN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):509-512
The present study carried out a phytochemical investigation of the methanol extract of the branches and leaves of Clausena lansium and afforded nine carbazole alkaloids (compounds 1-9) including two new carbazole alkaloids, claulansiums A and B (compounds 1 and 2). The new compounds were elucidated on the basis of extensive spectroscopic data (MS, NMR, IR, and UV) and the known compounds were identified by comparing spectroscopic data with those reported in literature. All the isolated compounds were tested for their cytotoxic activity against A549 and Hela cancer cell lines. Our results showed that compounds 2-6 exhibited varying degrees of cytotoxicity to cancer cells, with IC values ranging from 8.67 to 98.89 μmol·L.
A549 Cells
;
Alkaloids
;
chemistry
;
isolation & purification
;
toxicity
;
Antineoplastic Agents
;
chemistry
;
isolation & purification
;
toxicity
;
Carbazoles
;
chemistry
;
isolation & purification
;
toxicity
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Clausena
;
chemistry
;
HeLa Cells
;
Humans
;
Molecular Structure
;
Plant Extracts
;
chemistry
;
toxicity
;
Plant Leaves
;
chemistry
;
Plant Stems
;
chemistry
;
Plants, Medicinal
;
chemistry
10.New steroidal alkaloid and furostanol glycosides isolated from Solanum lyratum with cytotoxicity.
Yun-Ling XU ; Jia LV ; Wei-Fang WANG ; Yue LIU ; Ya-Juan XU ; Tun-Hai XU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):499-504
Two previously undescribed steroidal compounds, 16, 23-epoxy-22, 26-epimino-cholest-22(N), 23, 25(26)-trien-3β-ol-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-(25R)-5α-furost-20(22)-en-3β, 26-diol (2), together with 7 known ones including 26-O-β-D-glucopyranosyl-(25R)-5, 20(22)-dien-furost-3β, 26-diol (3), (25R)-5-en-spirost-3β-ol-O-β-D-glucopyranosyl-(1→4)-[α-L-rhmanopyranosyl-(1→2)]-β-D-galactopyranoside (4), funkioside D (5), aspidistrin (6), tigogenin-3-O-β-D-lucotrioside (7), desglucolanatigonin II (8), and degalactotigonin (9), were isolated from Solanum lyratum Thunb. Their cytotoxic activities were tested in two cancer cell lines by MTT method. One of the steroidal glycosides (6) showed significant cytotoxic activity against gastric cancer SGC7901 and liver cancer BEL-7402 cells.
Alkaloids
;
chemistry
;
isolation & purification
;
toxicity
;
Antineoplastic Agents
;
chemistry
;
isolation & purification
;
toxicity
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Glycosides
;
chemistry
;
pharmacology
;
toxicity
;
Humans
;
Inhibitory Concentration 50
;
Molecular Structure
;
Phytosterols
;
chemistry
;
isolation & purification
;
toxicity
;
Plant Extracts
;
chemistry
;
toxicity
;
Plants, Medicinal
;
chemistry
;
Solanum
;
chemistry
;
Sterols
;
chemistry
;
pharmacology
;
toxicity

Result Analysis
Print
Save
E-mail