1.A review of methods to estimate the visibility factor for bias correction in network scale-up studies
Aliakbar HAGHDOOST ; Milad AHMADI GOHARI ; Ali MIRZAZADEH ; Farzaneh ZOLALA ; Mohammad Reza BANESHI
Epidemiology and Health 2018;40(1):2018041-
Network scale-up is an indirect size estimation method, in which participants are questioned on sensitive behaviors of their social network members. Therefore, the visibility of the behavior affects the replies and estimates. Many attempts to estimate visibility have been made. The aims of this study were to review the main methods used to address visibility and to provide a summary of reported visibility factors (VFs) across populations. We systematically searched relevant databases and Google. In total, 15 studies and reports that calculated VFs were found. VF calculation studies have been applied in 9 countries, mostly in East Asia and Eastern Europe. The methods applied were expert opinion, comparison of NSU with another method, the game of contacts, social respect, and the coming-out rate. The VF has been calculated for heavy drug users, people who inject drugs (PWID), female sex workers (FSWs) and their clients, male who have sex with male (MSM), alcohol and methamphetamine users, and those who have experienced extra-/pre-marital sex and abortion. The VF varied from 1.4% in Japan to 52.0% in China for MSM; from 34.0% in Ukraine to 111.0% in China for FSWs; and from 12.0% among Iranian students to 57.0% in Ukraine for PWID. Our review revealed that VF estimates were heterogeneous, and were not available for most settings, in particular the Middle East and North Africa region, except Iran. More concrete methodologies to estimate the VF are required.
Africa, Northern
;
Bias (Epidemiology)
;
China
;
Drug Users
;
Europe, Eastern
;
Expert Testimony
;
Far East
;
Female
;
Humans
;
Iran
;
Japan
;
Male
;
Methamphetamine
;
Methods
;
Middle East
;
Sex Workers
;
Ukraine
2.A review of methods to estimate the visibility factor for bias correction in network scale-up studies.
Aliakbar HAGHDOOST ; Milad AHMADI GOHARI ; Ali MIRZAZADEH ; Farzaneh ZOLALA ; Mohammad Reza BANESHI
Epidemiology and Health 2018;40(1):e2018041-
Network scale-up is an indirect size estimation method, in which participants are questioned on sensitive behaviors of their social network members. Therefore, the visibility of the behavior affects the replies and estimates. Many attempts to estimate visibility have been made. The aims of this study were to review the main methods used to address visibility and to provide a summary of reported visibility factors (VFs) across populations. We systematically searched relevant databases and Google. In total, 15 studies and reports that calculated VFs were found. VF calculation studies have been applied in 9 countries, mostly in East Asia and Eastern Europe. The methods applied were expert opinion, comparison of NSU with another method, the game of contacts, social respect, and the coming-out rate. The VF has been calculated for heavy drug users, people who inject drugs (PWID), female sex workers (FSWs) and their clients, male who have sex with male (MSM), alcohol and methamphetamine users, and those who have experienced extra-/pre-marital sex and abortion. The VF varied from 1.4% in Japan to 52.0% in China for MSM; from 34.0% in Ukraine to 111.0% in China for FSWs; and from 12.0% among Iranian students to 57.0% in Ukraine for PWID. Our review revealed that VF estimates were heterogeneous, and were not available for most settings, in particular the Middle East and North Africa region, except Iran. More concrete methodologies to estimate the VF are required.
Africa, Northern
;
Bias (Epidemiology)*
;
China
;
Drug Users
;
Europe, Eastern
;
Expert Testimony
;
Far East
;
Female
;
Humans
;
Iran
;
Japan
;
Male
;
Methamphetamine
;
Methods*
;
Middle East
;
Sex Workers
;
Ukraine
3.A review of methods to estimate the visibility factor for bias correction in network scale-up studies
Aliakbar HAGHDOOST ; Milad AHMADI GOHARI ; Ali MIRZAZADEH ; Farzaneh ZOLALA ; Mohammad Reza BANESHI
Epidemiology and Health 2018;40():e2018041-
Network scale-up is an indirect size estimation method, in which participants are questioned on sensitive behaviors of their social network members. Therefore, the visibility of the behavior affects the replies and estimates. Many attempts to estimate visibility have been made. The aims of this study were to review the main methods used to address visibility and to provide a summary of reported visibility factors (VFs) across populations. We systematically searched relevant databases and Google. In total, 15 studies and reports that calculated VFs were found. VF calculation studies have been applied in 9 countries, mostly in East Asia and Eastern Europe. The methods applied were expert opinion, comparison of NSU with another method, the game of contacts, social respect, and the coming-out rate. The VF has been calculated for heavy drug users, people who inject drugs (PWID), female sex workers (FSWs) and their clients, male who have sex with male (MSM), alcohol and methamphetamine users, and those who have experienced extra-/pre-marital sex and abortion. The VF varied from 1.4% in Japan to 52.0% in China for MSM; from 34.0% in Ukraine to 111.0% in China for FSWs; and from 12.0% among Iranian students to 57.0% in Ukraine for PWID. Our review revealed that VF estimates were heterogeneous, and were not available for most settings, in particular the Middle East and North Africa region, except Iran. More concrete methodologies to estimate the VF are required.
4. Predicting cutaneous leishmaniasis using SARIMA and Markov switching models in Isfahan, Iran: A time-series study
Vahid RAHMANIAN ; Saied BOKAIE ; Aliakbar HAGHDOOST ; Mohsen BAROUNI
Asian Pacific Journal of Tropical Medicine 2021;14(2):83-93
Objective: To determine the potential effect of environment variables on cutaneous leishmaniasis occurrence using time-series models and compare the predictive ability of seasonal autoregressive integrated moving average (SARIMA) models and Markov switching model (MSM). Methods: This descriptive study employed yearly and monthly data of 49 364 parasitologically-confirmed cases of cutaneous leishmaniasis in Isfahan province, located in the center of Iran from January 2000 to December 2019. The data were provided by the leishmaniasis national surveillance system, the meteorological organization of Isfahan province, and Iranian Space Agency for vegetation information. The SARIMA and MSM models were implemented to examine the environmental factors of cutaneous leishmaniasis epidemics. Results: The minimum relative humidity, maximum relative humidity, minimum wind speed, and maximum wind speed were significantly associated with cutaneous leishmaniasis epidemics in different lags (P<0.05). Comparing SARIMA and MSM, Akaikes information criterion (AIC), and mean absolute percentage error (MAPE) in MSM were much smaller than SARIMA models (MSM: AIC=0.95, MAPE=3.5%; SARIMA: AIC=158.93, MAPE:11.45%). Conclusions: SARIMA and MSM can be a useful tool for predicting cutaneous leishmaniasis in Isfahan province. Since cutaneous leishmaniasis falls into one of two states of epidemic and non-epidemic, the use of MSM (dynamic) is recommended, which can provide more information compared to models that use a single distribution for all observations (Box-Jenkins SARIMA model).