1.Antigenic properties of dense granule antigen 12 protein using bioinformatics tools in order to improve vaccine design against Toxoplasma gondii
Ali Dalir GHAFFARI ; Abdolhossein DALIMI ; Fatemeh GHAFFARIFAR ; Majid PIRESTANI
Clinical and Experimental Vaccine Research 2020;9(2):81-96
Purpose:
Toxoplasma gondii is an opportunistic parasite infecting all warm-blooded animals including humans. The dense granule antigens (GRAs) play an important role in parasite survival and virulence and in forming the parasitophorous vacuole. Identification of protein characteristics increases our knowledge about them and leads to develop the vaccine and diagnostic studies.
Materials and Methods:
This paper gave a comprehensive definition of the important aspects of GRA12 protein, including physico-chemical features, a transmembrane domain, subcellular position, secondary and tertiary structure, potential epitopes of B-cells and T-cells, and other important features of this protein using different and reliable bioinformatics methods to determine potential epitopes for designing of a high-efficient vaccine.
Results:
The findings showed that GRA12 protein had 53 potential post-translational modification sites. Also, only one transmembrane domain was recognized for this protein. The secondary structure of GRA12 protein comprises 35.55% alpha-helix, 19.50% extended strand, and 44.95% random coil. Moreover, several potential B- and T-cell epitopes were identified for GRA12. Based on the results of the Ramachandran plot, 79.26% of amino acid residues were located in favored, 11.85% in allowed and 8.89% in outlier regions. Furthermore, the results of the antigenicity and allergenicity assessment noted that GRA12 is immunogenic and nonallergenic.
Conclusion
This research provided important basic and conceptual data on GRA12 to develop an effective vaccine against acute and chronic toxoplasmosis for further in vivo investigations. More studies are required on vaccine development using the GRA12 alone or combined with other antigens in the future.
2.Antigenic properties of dense granule antigen 12 protein using bioinformatics tools in order to improve vaccine design against Toxoplasma gondii
Ali Dalir GHAFFARI ; Abdolhossein DALIMI ; Fatemeh GHAFFARIFAR ; Majid PIRESTANI
Clinical and Experimental Vaccine Research 2020;9(2):81-96
Purpose:
Toxoplasma gondii is an opportunistic parasite infecting all warm-blooded animals including humans. The dense granule antigens (GRAs) play an important role in parasite survival and virulence and in forming the parasitophorous vacuole. Identification of protein characteristics increases our knowledge about them and leads to develop the vaccine and diagnostic studies.
Materials and Methods:
This paper gave a comprehensive definition of the important aspects of GRA12 protein, including physico-chemical features, a transmembrane domain, subcellular position, secondary and tertiary structure, potential epitopes of B-cells and T-cells, and other important features of this protein using different and reliable bioinformatics methods to determine potential epitopes for designing of a high-efficient vaccine.
Results:
The findings showed that GRA12 protein had 53 potential post-translational modification sites. Also, only one transmembrane domain was recognized for this protein. The secondary structure of GRA12 protein comprises 35.55% alpha-helix, 19.50% extended strand, and 44.95% random coil. Moreover, several potential B- and T-cell epitopes were identified for GRA12. Based on the results of the Ramachandran plot, 79.26% of amino acid residues were located in favored, 11.85% in allowed and 8.89% in outlier regions. Furthermore, the results of the antigenicity and allergenicity assessment noted that GRA12 is immunogenic and nonallergenic.
Conclusion
This research provided important basic and conceptual data on GRA12 to develop an effective vaccine against acute and chronic toxoplasmosis for further in vivo investigations. More studies are required on vaccine development using the GRA12 alone or combined with other antigens in the future.
3.In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination
Hamidreza MAJIDIANI ; Shahrzad SOLTANI ; Ali Dalir GHAFFARI ; Mohamad SABAGHAN ; Ali TAGHIPOUR ; Masoud FOROUTAN
Clinical and Experimental Vaccine Research 2020;9(2):146-158
Purpose:
The Toxoplasma gondii calcium-dependent protein kinase-3 (CDPK3) is a key enzyme for parasite egress, control of calcium-dependent permeabilization in parasitophorous vacuole membrane and tissue cyst formation. In this study, we comprehensively explored the bioinformatics features of this protein to improve vaccine design against T. gondii.
Materials and Methods:
Various web servers were employed for the analysis of physicochemical properties, post-translational modifications, localization in the subcellular milieu, secondary and tertiary structures, as well as B-cell, major histocompatibility complex (MHC)-binding and cytotoxic T-lymphocyte (CTL) epitopes.
Results:
This protein was a 537 amino acid antigenic and non-allergenic molecule with a molecular weight of 60.42 kDa, a grand average of hydropathicity score of -0.508, and aliphatic index of 79.50. There exists 46.74% alpha helix, 12.48% extended strand, and 40.78% random coil in the secondary structure. Ramachandran plot of the refined model demonstrated 99.3%, 0.7%, and 0.0% of residues in the favored, allowed and outlier areas, respectively. Besides, various potential B-cell (continuous and conformational), MHC-binding and CTL epitopes were predicted for Toxoplasma CDPK3 protein.
Conclusion
This article provides a foundation for further investigations, and laid a theoretical basis for the development of an appropriate vaccine against T. gondii infection.
4.In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination
Hamidreza MAJIDIANI ; Shahrzad SOLTANI ; Ali Dalir GHAFFARI ; Mohamad SABAGHAN ; Ali TAGHIPOUR ; Masoud FOROUTAN
Clinical and Experimental Vaccine Research 2020;9(2):146-158
Purpose:
The Toxoplasma gondii calcium-dependent protein kinase-3 (CDPK3) is a key enzyme for parasite egress, control of calcium-dependent permeabilization in parasitophorous vacuole membrane and tissue cyst formation. In this study, we comprehensively explored the bioinformatics features of this protein to improve vaccine design against T. gondii.
Materials and Methods:
Various web servers were employed for the analysis of physicochemical properties, post-translational modifications, localization in the subcellular milieu, secondary and tertiary structures, as well as B-cell, major histocompatibility complex (MHC)-binding and cytotoxic T-lymphocyte (CTL) epitopes.
Results:
This protein was a 537 amino acid antigenic and non-allergenic molecule with a molecular weight of 60.42 kDa, a grand average of hydropathicity score of -0.508, and aliphatic index of 79.50. There exists 46.74% alpha helix, 12.48% extended strand, and 40.78% random coil in the secondary structure. Ramachandran plot of the refined model demonstrated 99.3%, 0.7%, and 0.0% of residues in the favored, allowed and outlier areas, respectively. Besides, various potential B-cell (continuous and conformational), MHC-binding and CTL epitopes were predicted for Toxoplasma CDPK3 protein.
Conclusion
This article provides a foundation for further investigations, and laid a theoretical basis for the development of an appropriate vaccine against T. gondii infection.
5.Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach
Ali Dalir GHAFFARI ; Abdolhossein DALIMI ; Fatemeh GHAFFARIFAR ; Majid PIRESTANI ; Hamidreza MAJIDIANI
Clinical and Experimental Vaccine Research 2021;10(1):59-77
Purpose:
Toxoplasmosis, transmitted by Toxoplasma gondii, is a worldwide parasitic disease that affects approximately one-third of the world’s inhabitants. Today, there are no appropriate drugs to deter tissue cysts from developing in infected hosts. So, developing an effective vaccine would be valuable to avoid from toxoplasmosis. Considering the role of microneme antigens such as microneme protein 4 (MIC4) in T. gondii pathogenesis, it can be used as potential candidates for vaccine against T. gondii.
Materials and Methods:
In this study several bioinformatics methods were used to assess the different aspects of MIC4 protein such as secondary and tertiary structure, physicochemical characteristics, the transmembrane domains, subcellular localization, B-cell, helper-T lymphocyte, cytotoxic-T lymphocyte epitopes, and other notable characteristic of this protein design a suitable vaccine against T. gondii.
Results:
The studies revealed that MIC4 protein includes 59 potential post-translational modification sites without any transmembrane domains. Moreover, several probable epitopes of Band T-cells were detected for MIC4. The secondary structure comprised 55.69% random coil, 5.86% beta-turn, 19.31% extended strand, and 19.14% alpha helix. According to the Ramachandran plot results, 87.42% of the amino acid residues were located in the favored, 9.44% in allowed, and 3.14% in outlier regions. The protein allergenicity and antigenicity revealed that it was non-allergenic and antigenic.
Conclusion
This study gives vital basic on MIC4 protein for further research and also established an effective vaccine with different techniques against acute and chronic toxoplasmosis.