1.The osteogenesis of Ginsenoside Rb1 incorporated silk/micro-nano hydroxyapatite/sodium alginate composite scaffolds for calvarial defect.
Yuqiong WU ; Jiahui DU ; Qianju WU ; Ao ZHENG ; Lingyan CAO ; Xinquan JIANG
International Journal of Oral Science 2022;14(1):10-10
Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then, micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor's expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.
Alginates/pharmacology*
;
Animals
;
Bone Regeneration
;
Cell Differentiation
;
Durapatite/pharmacology*
;
Ginsenosides
;
Osteogenesis
;
Rats
;
Silk/pharmacology*
;
Tissue Scaffolds
2.Germination and propagartors of artificial seeds of Dendrobium huoshanense.
Ziqing QIN ; Ting ZHAO ; Jing QIU ; Yi LIN ; Yongping CAI
Chinese Journal of Biotechnology 2008;24(5):803-809
The artificial seeds of Dendrobium huoshanese was produced with Auxiliary buds, Protocorm-like bodies, and adventitious shoots. By using orthogonal experiment, we studied the effect of Maltose (%), hormone rate between 6-BA (mgx L(-1)) and NAA (mgL(-1)), active carbon (%), sodium alginate (%), time of ion exchange (min) on germination rate of artificial seeds of D. huoshanese. Then the leaking rate of maltose and variation of pH value of artificial seed capsule during vegetating of artificial seeds of D. huoshanese was measured. The results show that maltose played the most important role in inducing D. huoshanese artificial seeds to germinate. The optimal combination was: maltose 4%, hormone rate between 6-BA (mg x L(-1)) and NAA (mg x L(-1)) 10:1, active carbon 0.1%, sodium Alginate 4%, time of ion exchange is 10 min. Protocorm-like bodies were appropriate propagartor, the germination rate of artificial seeds of D. huoshanese takeing Protocorm-like bodies as the propagartors is 90.1%. After germination, the survival rate of seedlings of artificial seeds was 80.6%, the leaking rate of maltose of artificial seed capsule was 0.52%, and the pH value of artificial seed capsule decreased during the process of vegetation of artificial seeds. After having been stored at 4 degrees C for 20 d, the germination rate of artificial seeds of D. huoshanese takeing Auxiliary buds, Protocorm-like bodies, Adventitious shoots as the propagartors were 3.3%, 10.6%, 5.2%. Under natural conditions the germination rate was 13.8% after 10.0 g/L carbendazim was appended into artificial seed capsule. This result provides a foundation of manufacture and further study of the artificial seeds of D. huoshanese.
Alginates
;
pharmacology
;
Charcoal
;
pharmacology
;
Culture Techniques
;
methods
;
Dendrobium
;
growth & development
;
Germination
;
Glucuronic Acid
;
pharmacology
;
Hexuronic Acids
;
pharmacology
;
Maltose
;
pharmacology
;
Plant Shoots
;
growth & development
;
Seeds
;
growth & development
3.Study on the haemostatic efficiency of composite bio-particles.
Donghong LI ; Hua GAO ; Jiatao ZANG ; Junlino DIAO ; Jiancang LIU
Journal of Biomedical Engineering 2011;28(6):1141-1144
A porous composite particle (CP) was fabricated by the methods of emulsification and cross-link based on chitosan, alginate and collagen protein, and the tranexamic acid-loaded composite particles (TACP) was prepared by immersing the composite particle into the solution of tranexamic acid and by freeze drying. In the hepatic and splenic hemorrhage model of rabbits, CP and TACP were randomly used as haemostatic agents, and the Suxiaozhixuefen (Flashclot) was used as control. The corresponding hemostatic time and bleeding amount were observed respectively. The hemostatic time of CP and Flashclot were (2.48 +/- 0.88) min and (3.07 +/- 0.84) min, respectively, no significant difference was observed. However, the hemostatic time of TACP was (1.90 +/- 0.75) min, which was significantly shorter than that of CP and Flashclot (P < 0.05). In the splenic bleeding model of rabbits, similar results were obtained with these three kinds of hemostatics. These results indicated that the CP based on chitosan, alginate and collagen protein displayed similar hemostatic efficiency to Flashclot. However, the TACP might be one of promising haemostatic powders due to its more excellent hemostatic efficiency.
Alginates
;
administration & dosage
;
pharmacology
;
Animals
;
Biocompatible Materials
;
chemistry
;
Chitosan
;
administration & dosage
;
pharmacology
;
Collagen
;
administration & dosage
;
pharmacology
;
Female
;
Hemostatics
;
administration & dosage
;
pharmacology
;
Male
;
Rabbits
;
Tranexamic Acid
;
administration & dosage
;
pharmacology
4.Mechanical properties of alginate hydrogels with different concentrations and their effects on the proliferation chondrocytes in vitro.
Liling REN ; Xue FENG ; Dongyang MA ; Fulin CHEN ; Yin DING
Journal of Biomedical Engineering 2012;29(5):884-888
The mechanical properties of natural and synthetic extracellular matrices affect cellular processes and regulate tissue formation. In order to explore the optimal environment for chondrocytes growth in vitro, we investigated the relationship between the mechanical properties of the alginate beads and the ability of chondrocyte proliferation in this study. We measured the compressive properties of alginate with different concentrations by INSTRON 3365,and found that compressive moduli significantly increased with increasing alginate concentration. The rabbit chondrocytes were encapsulated in 1%, 2% and 3% (w/v) alginate beads at high (1 x 10(7)/ml) density. After 4 week's culturing, all the three groups resulted in the limited proliferation of the chondrocytes and the formation of cell clusters resembling cartilaginous tissues. Chondrocytes proliferation was more rapid on lower concentrate gels (1%, 2%) than on the higher concentrate gels (3%). These results suggested that the mechanical properties of scaffold architecture had certain effect on chondrocytes proliferation.
Alginates
;
pharmacology
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Chondrocytes
;
cytology
;
Compressive Strength
;
drug effects
;
Glucuronic Acid
;
pharmacology
;
Hexuronic Acids
;
pharmacology
;
Hydrogels
;
pharmacology
;
Rabbits
5.Effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats.
Qing Rong ZHANG ; Chang You CHEN ; Na XU ; Da Lun LYU ; Jie Zhi JIA ; Wen Hong LI ; Gao Xing LUO ; Yun Long YU ; Yi ZHANG
Chinese Journal of Burns 2022;38(10):914-922
Objective: To explore the effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats. Methods: The method of experimental study was adopted. The polyvinyl alcohol/sodium alginate microspheres (simple microspheres), P311 microspheres, and bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA) microspheres were prepared by water-in-oil emulsification, and then their morphology was observed under a light microscope/inverted fluorescence microscope. Chitosan solution was prepared, chitosan solution and β-glycerol phosphate disodium hydrate were mixed to prepare simple thermosensitive hydrogels, and thermosensitive hydrogels loaded with simple microspheres or P311 microspheres were prepared by adding corresponding substances in simple thermosensitive hydrogels. The morphological changes of the prepared four liquids in the state of tilt was observed at 37 ℃. After being freeze-dried, the micromorphology of the prepared four liquids was observed under a scanning electron microscope. Eighteen 3-4-week-old male Sprague-Dawley rats were divided into normal group without any treatment, dressing group, chitosan group, hydrogel alone group, simple microspheres-loaded hydrogel group, and P311 microspheres-loaded hydrogel group, which were inflicted with one full-thickness skin defect wound on both sides of the back spine and were dealt correspondingly, with 3 rats in each group. Rats with full-thickness skin defects in the five groups were collected, the wound healing was observed on post injury day (PID) 0 (immediately), 5, 10, and 15, and the wound healing rates on PID 5, 10, and 15 were calculated. The wound and wound margin tissue of rats with full-thickness skin defects in the five groups on PID 15 and normal skin tissue in the same site of rats in normal group were collected, hematoxylin and eosin staining was conducted to observe the histological changes, immunohistochemical staining was performed to observe the expressions of CD31 and vascular endothelial growth factor (VEGF), and Western blotting was conducted to detect the protein expressions of CD31 and VEGF. The number of samples was all three. Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, and Bonferroni correction. Results: Simple microspheres were spherical, with loose and porous surface. The surfaces of P311 microspheres and FITC-BSA microspheres were smooth without pores, and the FITC-BSA microspheres emitted uniform green fluorescence. The diameters of the three microspheres were basically consistent, being 33.1 to 37.7 μm. Compared with chitosan solution and simple thermosensitive hydrogel, the structures of the two microspheres-loaded hydrogels were more stable in the state of tilt at 37 ℃. The two microspheres-loaded hydrogels had denser network structures than those of chitosan solution and simple thermosensitive hydrogel, and in the cross section of which microspheres with a diameter of about 30 μm could be seen. Within PID 15, the wounds of rats in the five groups were healed to different degrees, and the wound healing of rats in P311 microspheres-loaded hydrogel group was the best. On PID 5, 10, and 15, the wound healing rates of rats in dressing group and chitosan group were (26.6±2.4)%, (38.5±3.1)%, (50.9±1.5)%, (47.6±2.0)%, (58.5±3.6)%, and (66.7±4.1)%, respectively, which were significantly lower than (59.3±4.8)%, (87.6±3.2)%, (97.2±1.0)% in P311 microspheres-loaded hydrogel group (P<0.05 or P<0.01). The wound healing rates of rats in hydrogel alone group on PID 10 and 15, and in simple microspheres-loaded hydrogel group on PID 15 were (76.0±3.3)%, (84.5±3.6)%, and (88.0±2.6)%, respectively, which were significantly lower than those in P311 microspheres-loaded hydrogel group (P<0.05). The epidermis, hair follicles, and sebaceous glands could be seen in the normal skin of rats in normal group, without positive expressions of CD31 or VEGF. The wounds of rats in P311 microspheres-loaded hydrogel group on PID 15 were almost completely epithelialized, with more blood vessels, hair follicles, sebaceous glands, and positive expressions of CD31 and VEGF in the wounds than those of rats with full-thickness skin defects in the other four groups, and more protein expressions of CD31 and VEGF than those of rats in the other five groups. Conclusions: The P311 microspheres-loaded thermosensitive chitosan hydrogel can release the encapsulated drug slowly, prolong the drug action time, and promote wound healing in rats with full-thickness skin defects by promoting wound angiogenesis and re-epithelialization.
Rats
;
Male
;
Animals
;
Hydrogels
;
Vascular Endothelial Growth Factor A
;
Chitosan/pharmacology*
;
Serum Albumin, Bovine/pharmacology*
;
Microspheres
;
Polyvinyl Alcohol/pharmacology*
;
Hematoxylin/pharmacology*
;
Eosine Yellowish-(YS)/pharmacology*
;
Rats, Sprague-Dawley
;
Wound Healing
;
Skin/injuries*
;
Skin Abnormalities
;
Soft Tissue Injuries
;
Water/pharmacology*
;
Alginates/pharmacology*
6.Cryopreservation of microencapsulated rat islets.
Jun HOU ; Wu-jun XUE ; Xiao-hui TIAN ; Xin-lu PANG ; Yan TENG ; Xin-shun FENG
Journal of Southern Medical University 2006;26(1):46-48
OBJECTIVETo investigate the role of alginate-polylysine-alginate (APA) microcapsules in protecting rat islet cells in cryopreservation.
METHODPurified rat islet cells microencapsulated with APA and free islet cells were cryopreserved for one month and then thawed for culture in RPMI 1640 overnight. The morphology of the cells was observed and their function assessed by stimulated insulin release test.
RESULTAPA microcapsulation protected the fragile islets from freezing damage by increasing the recovery rate of the cells from 68.6%+/-2.9% to 94.7%+/-1.4% (P<0.05). After incubation with high glucose (16.7 mmol/L) solution, the insulin release from the encapsulated cells after cryopreservation significantly increased in comparison with that of the nonencapsulated cells (22.6+/-1.8 mU/L vs 11.7+/-1.5 mU/L, P<0.05). In high glucose solution containing theophylline, the calculated stimulation index of the encapsulated cells was about 3 times that of the nonencapsulated cells.
CONCLUSIONAPA microencapsulation may significantly increase the post-thaw recovery and improve the function for cryopreserved rat islets.
Alginates ; pharmacology ; Animals ; Capsules ; Cell Separation ; Cell Survival ; Cryopreservation ; methods ; Insulin ; secretion ; Islets of Langerhans ; cytology ; secretion ; Male ; Polylysine ; analogs & derivatives ; pharmacology ; Rats ; Rats, Wistar
7.Study on preparation of acellular matrix material fixed by oxidized sodium alginate and its cytocompatibility.
Li LI ; Yuanting XU ; Jian CHEN ; Xixun YU
Journal of Biomedical Engineering 2011;28(6):1154-1158
This study was intended to investigate the crosslinking characteristics of a new crosslinking agent-oxidized sodium alginate (ADA), which might provide an ideal biological crosslinking reagent for the construction of soft tissue bioprostheses. Glutaraldehyde and genipin, which have been typically used in developing bioprostheses, were used as controls. The porcine aortas were treated by these three crosslinking agents for 15 min to 72 h and the fixation index was determined. Subsequently, the mechanical property and cytocompatibility of fixed tissues were also tested. The results indicated that fixed tissues by ADA were comparable as glutaraldehyde and superior to genipin controls in fixative efficiency. It was also found that tissues fixed by ADA were comparable as genipin and superior to glutaraldehyde controls in cytocompatibility and were similar to natural tissues in mechanical property. The results of in vitro study demonstrated that ADA could be a promising crosslinking reagent for biological tissue fixation.
Alginates
;
chemistry
;
pharmacology
;
Animals
;
Aorta
;
cytology
;
metabolism
;
Biocompatible Materials
;
metabolism
;
Cross-Linking Reagents
;
chemistry
;
pharmacology
;
Extracellular Matrix
;
metabolism
;
Glucuronic Acid
;
chemistry
;
pharmacology
;
Hexuronic Acids
;
chemistry
;
pharmacology
;
Swine
;
Tissue Engineering
;
methods
;
Tissue Fixation
;
Tissue Scaffolds
8.Microenvironment effect of APA microcapsule on embryonic stem cell.
Xiu-Li WANG ; Wei WANG ; Juan MA ; Xin GUO ; Xing-Ju YU ; Ze-Wen QIU ; Xiao-Jun MA
Acta Physiologica Sinica 2005;57(6):766-771
We undertook a series of studies to evaluate the role of microenvironment during embryonic stem cell (ESC) proliferation and differentiation. In this paper, cell microencapsulation technology was employed, which allows the free exchange of nutrients, oxygen and biologically active products between the entrapped cell and culture medium. We analyzed the feasibility of mouse ESCs in microcapsules and evaluated the growth, metabolic activity and differentiation of ESCs once enclosed in alginate-Ca(2+) microbead, solid or liquefied core alginate-poly-lysine-alginate (APA) microcapsule, respectively. We found that ESCs grew gradually in both types of microcapsules, but the appearance of cells was distinctive for each type of capsule. In the case of unliquefied microcapsules, cells created multiple spherical or lens-shaped aggregates. In contrast, the liquefied alginate core allowed the enclosed ESCs to grow together in a clump at the periphery of the capsule. Combined with cell viability and activity of glucose/lactic acid metabolism, the liquefied core of APA might provide more suitable culture conditions for the ESC growth in comparison with the unliquefied type or alginate-Ca(2+). For better evaluating the nature of ESC growth in APA microcapsules in vitro (that is whether or not encapsulated ESCs maintained undifferentiated state while they kept the ability for proliferation), the expression of the typical markers for undifferentiated, dividing ESCs, such as the stage specific embryonic antigen (SSEA-1) and alkaline phosphatase (AP), was detected by immunochemistry and immunofluorescence staining. The results showed that cell aggregates formed in the microcapsule still expressed the marker proteins at a higher level on day 22 in vitro. The expression of gene Oct-4, a transcription factor necessary for maintaining ESCs in an undifferentiated state, was also detected when RT-PCR assay was employed (on day 22 in vitro). In addition, cell aggregates were released from the microcapsules by mechanical disruption and induced into insulin-producing cells. These findings further indicate that most of the ESCs in APA microcapsule maintain their multi-potential even though the culture time prolonged as long as 22 d in vitro. Taken together, APA microcapsule provides a suitable microenvironment that promotes ESCs to maintain their stemness. Therefore, the microenvironment plays an important role in the process of ESC proliferation and differentiation.
Alginates
;
pharmacology
;
Animals
;
Capsules
;
pharmacology
;
Cell Culture Techniques
;
methods
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Embryonic Stem Cells
;
cytology
;
Mice
;
Mice, Inbred Strains
;
Polylysine
;
analogs & derivatives
;
pharmacology
;
Stem Cell Niche
;
physiology
9.Angiogenic activity of alginate-graft-PEI/pVEGF complexes in vivo.
Zhonghui HUANG ; Wei TENG ; Ying CHEN ; Qinmei WANG
Chinese Journal of Biotechnology 2013;29(12):1817-1827
To study the angiogenic activity of amphoteric brush-type copolymer complex of alginate-graft-PEI/pVEGF (Alg-g-PEI/pVEGF) in vivo, we evaluated the toxicity of Alg-g-PEI/pVEGF complexes to rMSCs and zebra fish first. Then, we used gel retardation assay to investigate the protection of complex to pDNA against DNase I, serum and heparin. For in vivo study, we evaluated the angiogenic activity of Alg-g-PEI/pVEGF complexes by using CAM and zebra fish as animal models, PEI 25K/pVEGF and saline as positive and negative controls. Our results show that Alg-g-PEI protected pVEGF from enzymolysis and displacement of heparin in some degree, and its complexes with pVEGF were less toxic to rMSCs and zebra fish. Alg-g-PEI/pVEGF complexes induced significant angiogenesis, which was dosage-dependent. In CAM, when the dosage of pVEGF was 2.4 microg/CAM, Alg-g-PEI group achieved the maximum of angiogenesis, and the area ratio of vessel to the total surface was 44.04%, which is higher than PEI 25K group (35.90%) and saline group (24.03%) (**P < 0.01). In zebra fish, the angiogenesis increased with the increase of N/P ratios of Alg-g-PEI/pVEGF complexes in our studied range; when N/P ratio was 110, the optimal angiogenesis was obtained with vessel length of 1.11 mm and area of 1.70 x 10(3) pixels, which is higher than saline group (0.69 mm and 0.94 x 10(3) pixels) (**P < 0.01) and PEI 25k group (0.82 mm and 1.11 x 10(3) pixels) (**P < 0.01). Our results demonstratethat Alg-g-PEI/pVEGF significantly induces angiogenesis in CAM and zebra fish, and has a great potential in therapeutic angiogenesis.
Alginates
;
chemistry
;
Angiogenesis Inducing Agents
;
pharmacology
;
Animals
;
Chick Embryo
;
Drug Carriers
;
chemistry
;
Genetic Vectors
;
genetics
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Mesenchymal Stromal Cells
;
cytology
;
drug effects
;
Polyethyleneimine
;
chemistry
;
Polymers
;
pharmacology
;
toxicity
;
Vascular Endothelial Growth Factor A
;
chemistry
;
Zebrafish
10.Study on relationship of dose-effect and time-effect of APA microencapsulated bovine chromaffin cells on pain treatment.
Jianfeng HUI ; Tao LI ; Zhi DU ; Jichang SONG
Journal of Biomedical Engineering 2011;28(6):1145-1153
This study was to investigate the relationship of dose-effect and time-effect of Alginate-Polylysine-Alginate (APA) microencapsulated bovine chromaffin cells on the treatment of pain model rats. Using a rat model of painful peripheral neuropathy, the antinociceptive effects of APA microencapsulated bovine cells transplanted into the subarachnoid space was evaluated by cold allodynia test and hot hyperalgesia test. Compared with control group, the withdrawal difference with cell number 50 thousands groups, 100 thousands groups and 200 thousands groups was reduced (P < 0.05), and the difference decreased with the cells increases, indicating a significant analgesic effect. There was no significant difference between 400 thousands groups and 200 thousands groups. This analgesic effect maintained longer than 12 weeks. There was a positive correlation between the analgesic effect and the quantity of APA microencapsulated bovine chromaffin cells which were transplanted to treat pain model rats, and the effective antinociception remained longer than 12 weeks.
Alginates
;
administration & dosage
;
pharmacology
;
Analgesia
;
methods
;
Animals
;
Cattle
;
Chromaffin Cells
;
transplantation
;
Dose-Response Relationship, Drug
;
Drug Compounding
;
Implants, Experimental
;
Pain Management
;
methods
;
Polylysine
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
Rats
;
Sciatica
;
therapy