1.Evaluation of zirconia-porcelain interface using X-ray diffraction
Alghazzawi F TARIQ ; Janowski M GREGG
International Journal of Oral Science 2015;(3):187-195
The aim of this study was to determine if accelerated aging of porcelain veneering had an effect on the surface properties specific to a tetragonal-to-monoclinic transformation (TMT) of zirconia restorations. Thirty-six zirconia samples were milled and sintered to simulate core fabrication followed by exposure to various combinations of surface treatments including as-received (control), hydrofluoric acid (HF), application of liner plus firings, application of porcelain by manual layering and pressing with firing, plus accelerated aging. The quantity of transformed tetragonal to monoclinic phases was analyzed utilized an X-ray diffractometer and one-way analysis of variance was used to analyze data. The control samples as provided from the dental laboratory after milling and sintering process had no TMT (Xm 5 0). There was an effect on zirconia samples of HF application with TMT (Xm 5 0.8%) and liner plus HF application with TMT (Xm 5 8.7%). There was an effect of aging on zirconia samples (no veneering) with significant TMT (Xm 5 70.25%). Both manual and pressing techniques of porcelain applications reduced the TMT (manual, Xm 5 4.41%, pressing, Xm511.57%), although there was no statistical difference between them. It can be concluded that simulated applications of porcelain demonstrated the ability to protect zirconia from TMT after aging with no effect of a liner between different porcelain applications. The HF treatment also caused TMT.
2.Effect of liner and porcelain application on zirconia surface structure and composition
Alghazzawi F TARIQ ; Janowski M GREGG
International Journal of Oral Science 2016;8(3):164-171
The purpose of this study was to determine if there is an effect of liner and porcelain application (layering and pressing techniques) on the surface of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which were exposed to permutations of liner, layered porcelain, and pressed porcelain. Scanning electron microscope (SEM)/energy dispersive spectroscope (EDS) was used to identify changes in composition and microstructure after removing liner and porcelain with hydrofluoric acid. Simulated aging was also conducted to determine the effect of liner and porcelain on low-temperature degradation. The control group had a typical equiaxed grain structure, referred to as unaffected. When covered with liner or porcelain, some areas changed in structure and composition and were termed affected. The frequency of affected structure decreased when liner was covered with either layered porcelain or pressed porcelain. There were statistical differences (Po0.05) in the composition between affected and unaffected for zirconium (layered porcelain with liner:affected=60%(0.8%) (m/m), unaffected=69%(4%), layered porcelain without liner:affected=59%(3%), unaffected=65%(3%)) and oxygen (layered porcelain with liner:affected=35%(2%), unaffected=26%(4%), layered porcelain without liner:affected=35%(3%), unaffected=30%(2%)). However, there were statistical differences (Po0.05) in the composition for zirconium and oxygen of the aged layered porcelain without liner only. The liner should not be used before porcelain application, especially when using the layering technique for zirconia restorations. Furthermore, pressing should be considered the technique of choice over layering.
3.Evaluation of zirconia-porcelain interface using X-ray diffraction.
Tariq F ALGHAZZAWI ; Gregg M JANOWSKI
International Journal of Oral Science 2015;7(3):187-195
The aim of this study was to determine if accelerated aging of porcelain veneering had an effect on the surface properties specific to a tetragonal-to-monoclinic transformation (TMT) of zirconia restorations. Thirty-six zirconia samples were milled and sintered to simulate core fabrication followed by exposure to various combinations of surface treatments including as-received (control), hydrofluoric acid (HF), application of liner plus firings, application of porcelain by manual layering and pressing with firing, plus accelerated aging. The quantity of transformed tetragonal to monoclinic phases was analyzed utilized an X-ray diffractometer and one-way analysis of variance was used to analyze data. The control samples as provided from the dental laboratory after milling and sintering process had no TMT (Xm = 0). There was an effect on zirconia samples of HF application with TMT (Xm = 0.8%) and liner plus HF application with TMT (Xm = 8.7%). There was an effect of aging on zirconia samples (no veneering) with significant TMT (Xm = 70.25%). Both manual and pressing techniques of porcelain applications reduced the TMT (manual, Xm = 4.41%, pressing, Xm = 11.57%), although there was no statistical difference between them. It can be concluded that simulated applications of porcelain demonstrated the ability to protect zirconia from TMT after aging with no effect of a liner between different porcelain applications. The HF treatment also caused TMT.
Dental Porcelain
;
chemistry
;
Surface Properties
;
X-Ray Diffraction
;
methods
;
Zirconium
;
chemistry