2.Analysis of the difference in metabolites and gene expressions between pre-receptive and receptive endometria.
Qin SHU ; Yan ZHAO ; Ancong WANG ; Wen LI ; Hongyan XU ; Wei DONG ; Qin MENG
Chinese Journal of Medical Genetics 2023;40(12):1496-1503
OBJECTIVE:
To analyze the difference in the gene expression, amino acid and carnitine levels in the cervical secretions between the endometria of pre-receptive and receptive stages, with an aim to provide clues for identifying new molecular markers for endometrial receptivity.
METHODS:
Fifty nine infertile women treated at the Department of Reproductive Medicine of Linyi People's Hospital from January 6, 2020 to January 31, 2022 were selected as as the study subjects, which were matched with 3 pairs (6 cases) of infertile women preparing for embryo transfer based on factors such as age, body mass index, and length of infertility. Endometrial tissue samples were collected for gene transcription and expression analysis. Twenty five women who had become pregnant through assisted reproductive technology were selected as the control group, and 28 non-pregnant women receiving ovulation monitoring at the Outpatient Department were enrolled as the case group. Status of endometrial receptivity was determined by ultrasonography. In the former group, endometrial tissues were sampled for sequencing, and GO and KEGG database enrichment analysis of differentially expressed genes was carried out. In the latter group, cervical secretions were collected, and amino acid and carnitine levels were measured by mass spectrometry. Statistical analysis was carried out using rank sum test, t test and chi-square test with SPSS v25.0 software.
RESULTS:
No difference was found in the clinical data of the patients with regard to age, body mass index, infertility years, AMH, FSH, LH, E2, and type of infertility. Compared with the receptive endometrial tissues, there were 100 significantly up-regulated genes and 191 significantly down-regulated genes in the pre-receptive endometrial tissue, with the most significantly altered ones being HLA-DRB5 and MMP10. The biological processes, molecular functions and pathways enriched by more differentially expressed genes in GO and KEGG were mainly immune regulation, cell adhesion and tryptophan metabolism. Analysis of secretion metabolism also revealed a significant difference in the levels of amino acids and carnitine metabolites between the two groups (P < 0.05), in particular those of Alanine, Valine, 3-hydroxybutyrylcarnitine (C4OH) + malonylcarnitine (C3DC)/captoylcarnitine (C10).
CONCLUSION
A significant difference has been discovered in the levels of gene transcription and protein expression in the endometrial tissues from the pre-receptive and receptive stages. The levels of amino acids and carnitine, such as Alanine, Valine, 3-hydroxybutyryl carnitine (C4OH)+malonyl carnitine (C3DC)/caproyl carnitine (C10), may be associated with the receptive status of the endometrium, though this need to be verified with larger samples.
Pregnancy
;
Humans
;
Female
;
Infertility, Female/genetics*
;
Endometrium/metabolism*
;
Amino Acids/metabolism*
;
Gene Expression
;
Carnitine
;
Alanine/metabolism*
;
Valine/metabolism*
3.Characteristics of amino acid metabolism in myeloid-derived suppressor cells in septic mice.
Yuan MA ; Yue ZHANG ; Rui LI ; Shu Wei DENG ; Qiu Shi QIN ; Liu Luan ZHU
Journal of Peking University(Health Sciences) 2022;54(3):532-540
OBJECTIVE:
To explore the amino acid metabolomics characteristics of myeloid-derived suppressor cells (MDSCs) in mice with sepsis induced by the cecal ligation and puncture (CLP).
METHODS:
The sepsis mouse model was prepared by CLP, and the mice were randomly divided into a sham operation group (sham group, n = 10) and a CLP model group (n = 10). On the 7th day after the operation, 5 mice were randomly selected from the surviving mice in each group, and the bone marrow MDSCs of the mice were isolated. Bone marrow MDSCs were separated to measure the oxygen consumption rate (OCR) by using Agilent Seahorse XF technology and to detect the contents of intracellular amino acids and oligopeptides through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) technology. Different metabolites and potential biomarkers were analyzed by univariate statistical analysis and multivariate statistical analysis. The major metabolic pathways were enriched using the small molecular pathway database (SMPDB).
RESULTS:
The proportion of MDSCs in the bone marrow of CLP group mice (75.53% ± 6.02%) was significantly greater than that of the sham group (43.15%± 7.42%, t = 7.582, P < 0.001), and the basal respiratory rate [(50.03±1.20) pmol/min], maximum respiration rate [(78.07±2.57) pmol/min] and adenosine triphosphate (ATP) production [(25.30±1.21) pmol/min] of MDSCs in the bone marrow of CLP group mice were significantly greater than the basal respiration rate [(34.53±0.96) pmol/min, (t = 17.41, P < 0.001)], maximum respiration rate [(42.57±1.87) pmol/min, (t = 19.33, P < 0.001)], and ATP production [(12.63±0.96) pmol/min, (t = 14.18, P < 0.001)] of sham group. Leucine, threonine, glycine, etc. were potential biomarkers of septic MDSCs (all P < 0.05). The increased amino acids were mainly enriched in metabolic pathways, such as malate-aspartate shuttle, ammonia recovery, alanine metabolism, glutathione metabolism, phenylalanine and tyrosine metabolism, urea cycle, glycine and serine metabolism, β-alanine metabolism, glutamate metabolism, arginine and proline metabolism.
CONCLUSION
The enhanced mitochondrial oxidative phosphorylation, malate-aspartate shuttle and alanine metabolism in MDSCs of CLP mice may provide raw materials for mitochondrial aerobic respiration, thereby promoting the immunosuppressive function of MDSCs. Blocking the above metabolic pathways may reduce the risk of secondary infection in sepsis and improve the prognosis.
Adenosine Triphosphate/metabolism*
;
Alanine/metabolism*
;
Animals
;
Aspartic Acid/metabolism*
;
Biomarkers/metabolism*
;
Chromatography, Liquid
;
Glycine/metabolism*
;
Malates/metabolism*
;
Mice
;
Myeloid-Derived Suppressor Cells/metabolism*
;
Sepsis/complications*
;
Tandem Mass Spectrometry
4.Occupational acute dimethylformamide poisoning: an analysis of 16 cases.
Peng WANG ; Jian-shu HUANG ; Xiu-ju LI ; Li MA ; Yuan-ling ZHOU ; Peng-qin LIAO ; Li-hua WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(10):765-767
OBJECTIVETo analyze the clinical features and diagnostic points of occupational acute dimethylformamide (DMF) poisoning and to explore the mechanism of occupational acute DMF poisoning.
METHODSA comprehensive analysis was performed on the clinical data of 16 cases of occupational acute DMF poisoning, including symptoms, signs, and laboratory testing results.
RESULTSThe main clinical features of occupational acute DMF poisoning were digestive system impairments, especially abdominalgia. Hemorrhagic gastroenteritis was not found by gastroscopy. There was no significant correlation between the degree of abdominalgia and alanine aminotransferase level (r(s) = 0.109, P>0.05).
CONCLUSIONAbdominalgia is recommended to be one of the reference indices for the diagnosis and degrading of occupational acute DMF poisoning, The mechanism of DMF poisoning remains unclear but it is considered to be related to methyl isocyanate, the intermediate product of DMF metabolism.
Abdominal Pain ; chemically induced ; Alanine Transaminase ; metabolism ; Dimethylformamide ; poisoning ; Humans ; Occupational Exposure ; Solvents ; poisoning
5.A comparison of the pharmacological actions of seven constituents isolated from fructus schizadrae (author's transl).
Bao TIAN-TONG ; Tu GUI-FANG ; Liu GENG-TAO ; Sun RUN-HUA ; Song ZHEN-YU
Acta Pharmaceutica Sinica 1979;14(1):1-7
Alanine Transaminase
;
metabolism
;
Animals
;
Liver
;
drug effects
;
Male
;
Mice
;
Plant Extracts
;
pharmacology
6.Dietary effect of green tea extract on hydration improvement and metabolism of free amino acid generation in epidermis of UV-irradiated hairless mice.
Sumin CHOI ; Jihye SHIN ; Bomin LEE ; Yunhi CHO
Journal of Nutrition and Health 2016;49(5):269-276
PURPOSE: Ultraviolet (UV) irradiation decreases epidermal hydration, which is maintained by reduction of natural moisturizing factors (NMFs). Among various NMFs, free amino acids (AA) are major constituents generated by filaggrin degradation. This experiment was conducted to determine whether or not dietary supplementation of green tea extract (GTE) in UV-irradiated mice can improve epidermal levels of hydration, filaggrin, free AAs, and peptidylarginine deiminase-3 (PAD3) expression (an enzyme involved in filaggrin degradation). METHODS: Hairless mice were fed a diet of 1% GTE for 10 weeks in parallel with UV irradiation (group UV+1%GTE). As controls, hairless mice were fed a control diet in parallel with (group UV+) or without (group UV-) UV irradiation. RESULTS: In group UV+, epidermal levels of hydration and filaggrin were lower than those in group UV-; these levels increased in group UV+1% GTE to levels similar to group UV-. Epidermal levels of PAD3 and major AAs of NMF, alanine, glycine and serine were similar in groups UV- and UV+, whereas these levels highly increased in group UV+1% GTE. CONCLUSION: Dietary GTE improves epidermal hydration by filaggrin generation and degradation into AAs.
Alanine
;
Amino Acids
;
Animals
;
Diet
;
Dietary Supplements
;
Epidermis*
;
Glycine
;
Metabolism*
;
Mice
;
Mice, Hairless*
;
Serine
;
Tea*
7.Protein Metabolism and Glutamine Supplementation in Stress Condition.
Journal of Clinical Nutrition 2014;6(2):56-58
Stress conditions such as sepsis, trauma, burn, fracture, and major surgery are associated with hypermetabolism and hypercatabolism. Protein is mobilized for energy and uptake of amino acids by muscle tissue is decreased in stress conditions. The metabolic response to stress causes movement of amino acids (predominantly alanine and glutamine) from peripheral reserves to metabolically active tissues. Glutamine is a conditionally essential amino acid during stress. Glutamine plays a role in maintenance of intestinal immune function and reinforcement of wound repair. Supplementation of parenteral glutamine (0.3~0.5 g/kg/day) as a component of nutrition support may improve clinical outcomes in appropriate patients. In patients with multiorgan failure, supplementation with a high dose of glutamine (>0.5 g/kg/day) in the acute phase of critical illness is not recommended. In stress conditions, provision of adequate protein is essential and glutamine supplementation should be considered in patients without specific contraindications.
Alanine
;
Amino Acids
;
Burns
;
Critical Illness
;
Glutamine*
;
Humans
;
Metabolism*
;
Sepsis
;
Wounds and Injuries
8.One case analysis of adult type Niemann-Pick disease.
Xinping SHA ; Deming TAN ; Guoling HU ; Xiaoying WU ; Jianwu PENG
Chinese Journal of Hepatology 2002;10(6):425-425
9.Effects of ligustrazin on lipid peroxidation during hepatic ischemia reperfusion injury.
Zheng-Jie XU ; Wan-Tie WANG ; Dong LI ; Li-Na LIN
Chinese Journal of Applied Physiology 2002;18(2):173-175
AIMTo explore the role of ligustrazin on dynamic changes of lipid peroxidation in hepatic ischemia/reperfusion injury (HIRI) and its mechanism.
METHODSThe HIRI model was used. Twenty rabbits were randomly divided into control group (n = 10) and ligustrazin group (n = 10). The xanthine oxidase (XO) activity, superoxide dismutase (SOD) activity,malondialdehyde (MDA) content and glutamic pyruvic transaminase (GPT) activity in plasma were observed before ischemia and at ischemia 25 min, reperfusion 25 min, reperfusion 60 min and reperfusion 120 min.
RESULTSThe XO activity, SOD activity, MDA content and GPT activity of ligustrazin group, as compared with control group, showed significant differences (P < 0.05 or P < 0.01) at total time points of reperfusion.
CONCLUSIONLigustrazin has notable anti-lipid peroxidation effect on HIRI, which is due to its inhibiting the generation of oxygen free radicals and its strengthening scavenging of oxygen free radicals.
Alanine Transaminase ; metabolism ; Animals ; Female ; Lipid Peroxidation ; drug effects ; Liver ; drug effects ; metabolism ; Male ; Malondialdehyde ; blood ; Pyrazines ; pharmacology ; Rabbits ; Reperfusion Injury ; metabolism ; Superoxide Dismutase ; metabolism ; Xanthine Oxidase ; metabolism
10.Discovery of a novel gene involved in autolysis of Clostridium cells.
Liejian YANG ; Guanhui BAO ; Yan ZHU ; Hongjun DONG ; Yanping ZHANG ; Yin LI
Protein & Cell 2013;4(6):467-474
Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.
Autolysis
;
genetics
;
Clostridium acetobutylicum
;
genetics
;
metabolism
;
Computational Biology
;
Genes, Bacterial
;
N-Acetylmuramoyl-L-alanine Amidase
;
genetics
;
metabolism
;
Temperature