1.Applicability of the two-compartment coaxial cylindrical model for ambulatory measuring of cardiac output with spot-electrodes.
Yilin SONG ; Shumei GAO ; Akira IKRASHI ; Ken-ichi YAMAKOSHI
Journal of Biomedical Engineering 2013;30(4):684-691
The principle of ambulatory cardiac output (CO) measuring technique is introduced in this paper. Experimental studies about the applicability of the two-compartment coaxial cylindrical model for ambulatory measurement of cardiac output with spot-electrodes have been carried out with using our newly-developed multi-channel impedance mapping system. The key factors using a spot-electrode array instead of a conventional band-electrode array for non-invasive CO) measurement are elaborated. The variations of the electric impedance pulsatile component (deltaZ waveform) and the two kinds of typical modes of deltaZ distributions measured by six electrodes on the midsternal (midian) line from the medial portion at the level of clavicle to the portion above the xiphisternum are discussed. The applicability of the two-compartment coaxial cylindrical model for ambulatory measurement of CO with spot-electrodes is analyzed. Synthesizing the deltaZ distributions and their typical changing models on the midsternal (midian) line during blood inflowing into aorta is the optimal positions of a pair of spot-electrodes for voltage pick-up at the level of clavicle for the upper electrode and the position at the level of nipple for the lower electrode when spot-electrode is being used to measure non-invasive CO.
Biomedical Engineering
;
Cardiac Output
;
physiology
;
Cardiography, Impedance
;
instrumentation
;
methods
;
Electrocardiography, Ambulatory
;
instrumentation
;
methods
;
Electrodes
;
Equipment Design
;
Heart
;
physiology
;
Humans
;
Models, Cardiovascular
;
Thorax
2.Optimal electrode array for ambulatory measuring of cardiac output based on the electrical impedance method.
Yilin SONG ; Shumei GAO ; Akira IKRASHI ; Ken-ichi YAMAKOSHI
Journal of Biomedical Engineering 2011;28(1):32-57
Principle of ambulatory cardiac output (CO) measuring technique is introduced in this paper. A lot of experimental studies of the current distribution on the thorax under the condition that the current injection electrodes were adhered to different positions were carried out by using a developed multi-channel impedance mapping system. The static impedance contour maps (Zo-map) and its pulsatile component contour maps (deltaZ-map) under different measuring conditions were analyzed, and the applicability of a two-compartment coaxial cylindrical model using a spot-electrode array instead of the conventional band-electrode array for ambulatory CO measurement, as well as the optimal spot-electrode array, were discussed. Based on the experimental results and the daily use of the ambulatory CO measuring technique, the optimal spot-electrode array meeting the condition of the two-compartment coaxial cylindrical model was determined as that a pair of spot-electrodes for current injection was located on the positions behind the ears and on the right lower abdomen, and a pair of spot-electrodes for voltage pick-up places on the medial portion at the level of clavicle and on the portion above the xiphisternum.
Cardiac Output
;
physiology
;
Cardiography, Impedance
;
methods
;
Electric Impedance
;
Electrodes
;
Equipment Design
;
Humans