1.Hypoglycemic Effects of a Water-Soluble Extract from Culture Medium of Ganoderma lucidum (Rei-shi) Mycelia in Type 2 Diabetic Mice
Shinya KAMIUCHI ; Yuko HATTA ; Akane MIYAZATO ; Mari OKAZAKI ; Yukiko KAWAHARA ; Aiko TANAKA ; Yuri SHINDOU ; Meiyan XUAN ; Fumiko SUZUKI ; Hiroshi IIZUKA ; Yasuhide HIBINO
Japanese Journal of Complementary and Alternative Medicine 2010;7(1):35-42
Objective: The water-soluble extract of Ganoderma lucidum mycelia (WER) is prepared from a solid medium composed of bagasse and rice bran overgrown with Ganoderma lucidum mycelia. Recently, we have reported that WER had glucose-lowering effect in streptozotosin-induced diabetic mice, an animal model of type 1 diabetes. Here, we investigated whether long-term treatment with WER affects hyperglycemia and insulin resistance in KK-Ay mice, a type 2 diabetic animal model with obesity.
Methods: Female KK-Ay mice were given free access to water and high-fat food containing 0.5% WER for 8 weeks, with blood glucose and plasma insulin levels assessed every week. At the end of the experimental period, insulin tolerance test (ITT) was performed, and plasma levels of triglyceride, total cholesterol, HDL-cholesterol, AST, ALT and adiponectin were measured. Furthermore, expression of GLUT4 in skeletal muscle cell membrane and adipocytes was also determined by immunostaining and Western blot analysis.
Results: The mice with high-fat ingestion showed a gradual increase in levels of blood glucose and body weight. In the WER-treated mice, the blood glucose level was significantly suppressed after 2 weeks of treatment. WER also reduced plasma levels of ALT and insulin, but did not affect the other parameters. Additionally, ITT revealed that WER improved insulin sensitivity. Moreover, expression of GLUT4 in the plasma membrane of skeletal muscle cells and adipocytes of the WER-treated mice was increased.
Conclusion: These results indicate that WER has a glucose-lowering effect in type 2 diabetic mice. WER also improved hyperinsulinemia and insulin sensitivity, which may derive from enhancement of glucose uptake through GLUT4 of skeletal muscle cells and adipocytes.
2.Gene Expression Profile of Olfactory Transduction Signaling in an Animal Model of Human Multiple Sclerosis
Jeongtae KIM ; Meejung AHN ; Yuna CHOI ; Poornima EKANAYAKE ; Chul Min PARK ; Changjong MOON ; Kyungsook JUNG ; Akane TANAKA ; Hiroshi MATSUDA ; Taekyun SHIN
Experimental Neurobiology 2019;28(1):74-84
Olfactory dysfunction occurs in multiple sclerosis in humans, as well as in an animal model of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyze differentially expressed genes (DEGs) in olfactory bulb of EAE-affected mice by next generation sequencing, with a particular focus on changes in olfaction-related signals. EAE was induced in C57BL/6 mice following immunization with myelin oligodendrocyte glycoprotein and adjuvant. Inflammatory lesions were identified in the olfactory bulbs as well as in the spinal cord of immunized mice. Analysis of DEGs in the olfactory bulb of EAE-affected mice revealed that 44 genes were upregulated (and which were primarily related to inflammatory mediators), while 519 genes were downregulated; among the latter, olfactory marker protein and stomatin-like 3, which have been linked to olfactory signal transduction, were significantly downregulated (log2 [fold change] >1 and p-value < 0.05). These findings suggest that inflammation in the olfactory bulb of EAE-affected mice is associated with the downregulation of some olfactory signal transduction genes, particularly olfactory marker protein and stomatin-like 3, which may lead to olfactory dysfunction in an animal model of human multiple sclerosis.
Animals
;
Down-Regulation
;
Encephalomyelitis, Autoimmune, Experimental
;
Gene Expression
;
Humans
;
Immunization
;
Inflammation
;
Mice
;
Models, Animal
;
Multiple Sclerosis
;
Myelin-Oligodendrocyte Glycoprotein
;
Olfactory Bulb
;
Olfactory Marker Protein
;
Signal Transduction
;
Spinal Cord
;
Transcriptome
4.Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine
Yuna CHOI ; Kyungsook JUNG ; Hyo Jin KIM ; Jiyoon CHUN ; Meejung AHN ; Youngheun JEE ; Hyun Ju KO ; Changjong MOON ; Hiroshi MATSUDA ; Akane TANAKA ; Jeongtae KIM ; Taekyun SHIN
Experimental Neurobiology 2021;30(4):308-317
Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.
5.Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine
Yuna CHOI ; Kyungsook JUNG ; Hyo Jin KIM ; Jiyoon CHUN ; Meejung AHN ; Youngheun JEE ; Hyun Ju KO ; Changjong MOON ; Hiroshi MATSUDA ; Akane TANAKA ; Jeongtae KIM ; Taekyun SHIN
Experimental Neurobiology 2021;30(4):308-317
Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.
6.Histopathological evaluation of the Pathology lungs in experimental autoimmune encephalomyelitis
Sungmoo HONG ; Jeongtae KIM ; Kyungsook JUNG ; Meejung AHN ; Changjong MOON ; Yoshihiro NOMURA ; Hiroshi MATSUDA ; Akane TANAKA ; Hyohoon JEONG ; Taekyun SHIN
Journal of Veterinary Science 2024;25(3):e35-
Objective:
This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry.
Methods:
Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein 35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry.
Results:
Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05).Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice.
Conclusions
and Relevance: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.
7.Attitudes and Barriers of Physicians toward Palliative Care in Critical Care Setting:Qualitative Content Analysis Using Open-ended Data from Nationwide Self-administrated Questionnaire Survey in Japan
Yuta TANAKA ; Akane KATO ; Kaori ITO ; Yuko IGARASHI ; Satomi KINOSHITA ; Yoshiyuki KIZAWA ; Mitsunori MIYASHITA
Palliative Care Research 2023;18(2):129-136
Purpose: Palliative care implementation should take into account the perceptions and acceptability of healthcare providers. This study aimed to identify physicians’ perceptions of palliative care and barriers to palliative care practice in the critical care setting. Methods: A nationwide, self-administered questionnaire was distributed to physicians working in intensive care units, and free-text data were qualitatively analyzed. Results: The questionnaire was sent to 873 respondents, and 436 responded (50% response rate). Of these, 95 (11%) who responded to the open-ended sections were included in the analysis. Conclusion: Japanese physicians working in ICUs recognized that palliative care was their role and practiced it as part of their usual care. They felt, however, that the practice was difficult and not sufficient. Barriers to practice included the lack of human resources and availability of palliative care teams, and the lack of uniformity in the perception of palliative care in the critical care setting.