1. Regulation of LncRNA00067110 on Proliferation, Apoptosis and Melanins Production of B16-F10 Cells by Targeting Cabyr
Wan-Yun YANG ; Qiong JIA ; Shi-Xiong HU ; Ding-Xing JIAO ; Lei-Tao YU ; Rui-Wen FAN ; Khan AJAB
Chinese Journal of Biochemistry and Molecular Biology 2022;38(6):799-808
Long non-coding RNA (lncRNA) is a type of non-coding RNA with the more than 200 nucleotides. Several lncRNAs have been identified as the potential targets for cancer therapy. LncRNA00067110 is one of the differentially expressed genes in the transcriptome profiles of melanoma B16-F10 cells compared to normal mice melanocytes. To investigate whether lncRNA00067110 regulates the proliferation, apoptosis and melanogenesis of B16-F10 cells, the calcium-binding tyrosine phosphorylation regulated protein (Cabyr) target gene was predicted by LncTar and verified by dual luciferase activities. The regulating function of lncRNA00067110 was investigated by the analysis of transcriptome profiles and to detect the proliferation, apoptosis and melanin production of B16-F10 cells transfected by the overexpression plasmids of lncRNA00067110. The results showed that the relationship of lncRNA00067110 targeting Cabyr, the mRNA and protein levels of proliferation (MEK/ERK/MNK/CREB) and melanogenesis-related genes (TYR family and CREB) were significantly down-regulated, while the mRNA and protein levels of apoptosis-related genes (AKT and Bcl-2) were up-regulated in B16-F10 cells with lncRNA00067110 overexpression. The transcriptome profile of B16-F10 cells with lncRNA00067110 overexpression showed that 17 genes were differentially expressed, among which Cabyr was up-regulated. Furthermore, the effect of lncRNA00067110 on the phenotypes of cell proliferation and apoptosis were verified. The results suggested that lncRNA00067110 might be a novel target for the treatment of melanoma by targeting Cabyr, which regulate the expression of related genes to inhibit the proliferation and melanogenesis, as well as to induce the apoptosis of B16-F10 cells.
2. TMEM106B Induces Melanogenesis by Regulating ERK/CREB Signaling Pathway
Zhao-Qi ZHOU ; Ajab KHAN ; Qiong JIA ; Shi-Xiong HU ; Rui-Wen FAN
Chinese Journal of Biochemistry and Molecular Biology 2021;37(10):1386-1393
The TMEM106B protein is a type-II transmembrane protein, which localizes in the endosome and lysosome of dendrites in primary neurons. TMEM106B is essential for maintaining and branching of dendrites, and thus regulates retrograde lysosomal trafficking of dendrites in primary neurons. Mammalian melanocytes are derived from neural cells, while melanosomes are originated from early endosome. However, the function of TMEM106B protein in melanocytes and its potential molecular mechanism in melanogenesis still remain unknown. Recently it was reported that transcription factor EB (TFEB) was the regulator of lysosome synthesis and TMEM106B protein overexpression promoted TFEB translocation into the nucleus. However, MITF (microphthalmia-associated transcription factor) and TFEB regulate each other in melanoma cells in vitro. Here in, plasmid containing gene for TMEM106B overexpression was transfected into melanocytes to investigate the regulation of TMEM106B on melanogenesis. The results showed that TMEM106B protein was localized in the cytoplasm of melanocytes. Compared with the negative control (NC), the mRNA levels of cyclic AMP-responsive element-binding protein (CREB) and MITF, especially CREB, were significantly increased in melanocytes with TMEM106B overexpression P< 0. 001). Western blot analysis showed that the expression of phosphorylated MAP kinase (p-ERK) was apparently increased (P<0.001) and resulted in the up-regulation of melanogenic regulatory proteins, including MITF, tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1) and 2 (TYRP2). Masson-Fontana method showed that TMEM106B influenced the production of melanin in melanocytes. The spectrophotometry assay indicated that the amount of total melanin (ASM) (P<0. 001) and eumelanin (EM) (P<0. 05) were increased in alpaca melanocytes transfected with TMEM106B, while pheomelanin (PM) (P<0. 001) was decreased. These results demonstrated that TMEM106B played a vital role in melanogenesis in melanocytes by regulating ERK/CREB signaling pathway.
3.A rapid colloidal gold immunochromatographic assay for the diagnosis of coronavirus disease 2019.
Xiao-Ling WANG ; Lei WANG ; Chao-Lu HASI ; Yu-Po WANG ; Ajab KHAN ; Bin-Zhi REN ; Zhi-Zhen LIU ; Shun-Lin HOU ; Li-Hong YANG ; Liao-Yun ZHANG ; Yong-Kang DONG ; Jun XU ; Jun XIE
Chinese Medical Journal 2020;133(16):1986-1988
4.Identification and characterization of murine adipose tissue-derived somatic stem cells of Shenque (CV8) acupoint.
Yu-Hui HAO ; Zhi-Zhen LIU ; Hong ZHAO ; Lei WANG ; Ajab KHAN ; Jian-Bin MU ; Yu-Fei WANG ; Li-Hong YANG ; Ran ZHOU ; Jun XIE
Chinese Medical Journal 2021;134(22):2730-2737
BACKGROUND:
Shenque (CV8) acupoint is located on the navel and has been therapeutically used for more than 2000 years in Traditional Chinese Medicine (TCM). However, clinical research on the underlying therapeutic molecular mechanisms of the CV8 acupoint lags far behind. This study aimed to study the mechanisms of umbilical acupoint therapy by using stem cells.
METHODS:
The morphological characteristics of CV8 acupoint were detected under a stereomicroscope using hematoxylin and eosin (H&E) staining. Oil Red, Masson, and immunohistochemical staining on multi-layered slices were used to identify the type of cells at the CV8 acupoint. Cell proliferation was measured by a cell counting kit-8 (CCK-8) method. Flow cytometry and immunohistochemistry were used for cell identification. Induced differentiation was used to compare the differentiation of cells derived from CV8 acupoint and non-acupoint somatic stem cells into other cell types, such as osteogenic, adipogenic, and neural stem cell-like cells.
RESULTS:
Morphological observations showed that adipose tissues at the linea alba of the CV8 acupoint in mice had a mass-like distribution. Immunohistochemical staining confirmed the distribution of stem cell antigen-1 (Sca-1) positive cells in the multi-layered slices of CV8 acupoint tissues. Cells isolated from adipose tissues at the CV8 acupoint exhibited high expression of Sca-1 and CD44 and low expression of CD31 and CD34, and these cells possessed osteogenic, adipogenic, and neurogenic stem cell-like cell differentiation ability. The cell proliferation (day 4: 0.5138 ± 0.0111 vs. 0.4107 ± 0.0180, t = 8.447, P = 0.0011; day 5: 0.6890 ± 0.0070 vs. 0.5520 ± 0.0118, t = 17.310, P < 0.0001; day 6: 0.7320 ± 0.0090 vs. 0.6157 ± 0.0123, t = 13.190, P = 0.0002; and day 7: 0.7550 ± 0.0050 vs. 0.6313 ± 0.0051, t = 42.560, P < 0.0001), adipogenic ([9.224 ± 0.345]% vs. [3.933 ± 1.800]%, t = 5.000, P = 0.0075), and neurogenic stem cell-like cell differentiation (diameter < 50 μm: 7.2000 ± 1.3040 vs. 2.6000 ± 0.5477, t = 7.273, P < 0.0001; diameter 50-100 μm: 2.6000 ± 0.5477 vs. 1.0000 ± 0.7071, t = 4.000, P = 0.0039; and diameter >100 μm: 2.6000 ± 0.5477 vs. 0.8000 ± 0.8367, t = 4.025, P = 0.0038) were significantly enhanced in somatic stem cells derived from the CV8 acupoint compared to somatic stem cells from the groin non-acupoint. However, cells possessed significantly weaker osteogenicity ([2.697 ± 0.627]% vs. [7.254 ± 0.958]%, t = 6.893, P = 0.0023) in the CV8 acupoint group.
CONCLUSIONS
Our study showed that CV8 acupoint was rich with adipose tissues that contained abundant somatic stem cells. The biological examination of somatic stem cells derived from the CV8 acupoint provided novel insights for future research on the mechanisms of umbilical therapy.
Acupuncture Points
;
Adipose Tissue
;
Adult Stem Cells
;
Animals
;
Cell Differentiation
;
Cells, Cultured
;
Mice
;
Osteogenesis