1.Epidemiological and clinical characteristics of imported malaria in Dalian from 2013 to 2018
Changxin HAN ; Aijun SUN ; Yuting LI ; Fang SUI ; Shijuan QIN ; Chunwen PU
Chinese Journal of Endemiology 2019;38(10):835-839
Objective To understand the epidemiological and clinical characteristics of imported malaria cases admitted in Dalian and provide evidence for clinical diagnosis,treatment and control of the disease.Methods A retrospective analysis method was used to descriptively analyze the epidemiological data of 104 cases of imported malaria from 2013 to 2018 treated in Dalian Sixth People's Hospital.The clinical characteristics of 93 hospitalized patients (13 in the severe group and 80 in the non-severe group) were analyzed by t (t') test or Mann-Whitney U test.Results Among 104 cases of imported malaria,82 cases were falciparum malaria,5 cases were vivax malaria,4 cases were oval malaria,2 cases were quartan malaria,2 cases were mixed infections,and there were 9 cases without classification.The ratio of males to females was 16.33:1.00 (98:6).The age was (42.07 ± 11.07) years.There was no obvious seasonality in the onset time.We found 102 cases were come from Africa,and their main occupations were outbound workers or fishermen.After blood laboratory examination at admission between severe group and non-severe group,the differences of red blood cell (RBC),hematocrit (PCV),hemoglobin (Hb),serum creatinine (SCr),and blood urea nitrogen (BUN)were statistically significantly different (t =6.561,7.140,6.962;Z =-3.469,-3.739,P < 0.05).Conclusions In Dalian the falciparum malaria is the main infectious species in imported malaria cases,and Africa is the main area of infection.Outbound workers should be trained in malaria prevention and treatment in Africa.Early admission indicators (RBC,PCV,Hb,SCr,BUN) help clinicians to diagnosis and treat severe cases early.
2.Preparation and drug release effect evaluation of drug-loaded cross-linked decellularized corneal stromal lenticules in vitro
Jing RAO ; Jiansu CHEN ; Jianing GU ; Xiao CHEN ; Yini WANG ; Yonghuan LIU ; Aijun PU ; Qizhi ZHOU
Chinese Journal of Experimental Ophthalmology 2020;38(12):1004-1010
Objective:To prepare a drug release system of drug-loaded cross-linked decellularized corneal stromal lenticules and evaluate its drug release characteristics in vitro. Methods:Lenticules were obtained during femtosecond laser-assisted small incision lenticule extraction (SMILE) surgery in Chongqing Aier Ophthalmology Hospital.Decellularized corneal stromal lenticules were prepared using high concentration sodium chloride (NaCl) combining nuclease.The decellularized corneal stromal lenticules were randomly divided into normal group, 0.5% levofloxacin group, 3% levofloxacin group and 5% levofloxacin group, with 4 lenticules in each group.The lenticules did not receive any treatment in the normal group, and drug-loading those were soaked in different doses of levofloxacin solution for three hours according to grouping.In the crosslinking test, 12 decellularized corneal stromal lenticules were randomly divided into non-crosslinking group, 0.01 mmol 1-(3-dimethylamino) propylimine (EDC) group, 0.05 mmol EDC group and 0.25 mmol EDC group.The lenticules for cross-linking were soaked in different contents of mixed solution of EDC with N-hydroxysuccinyl (NHS) for four hours respectively according to grouping, and then in 3% levofloxacin solution for three hours.Only 3% levofloxacin solution soaking was carried in the non-crosslinking group.High performance liquid chromatography (HPLC) was employed to detect the drug release concentration of the lenticules, and spectral scanning method was performed to measure light transittance of the lenticules.The surface ultrastructure of the decellularized lenticules among different cross-linking groups was examined and compared with scanning electron microscope.The use of the human corneal lenticules was approved by an Ethics Committee of Chongqing Aier Ophthalmology Hospital (No.2019012). Written informed consent was obtained from each patient before surgery.Results:The release concentrations of decellularized corneal stroma lenticules were significantly different at 1 day, 7, 14, and 21 days among 0.5%, 3%, and 5% levofloxacin group ( P<0.05) or also among the 0.01 mmol EDC, 0.05 mmol EDC, and 0.25 mmol EDC cross-linked groups ( P<0.01). The drug release concentrations in 0.05 mmol EDC group were the highest at various time points, and the release time of the three cross-linked groups lasted until 21 days after release concentrations of decellularized corneal stroma lenticules.The drug release concentrations in cross-linked groups and non-crosslinking group were gradually declined with the prolong of drug-loading time, showing a significant difference at different time points ( P<0.05). The transmittance of the lenticules was (88.68±1.19)% and (91.55±1.16)% in the non-crosslinking group and normal group, respectively, with no significant difference ( P>0.05). The average transmittance of the lenticules was significantly reduced in the drug-loaded groups compared with the normal group ( P<0.05). The smaller collagen fiber voids and closely arranged collagen fibers were displayed in the cross-linking groups under the scanning electron microscope with the best effect in the 0.25 mmol EDC group. Conclusions:EDC/NHS cross-linking can improve the drug-loading effect of decellularized corneal stromal lenticules probably by lessening collagen fiber voids.The drug-loaded cross-linked decellularized corneal stromal lenticules have a good drug release effect in vitro.
3.Research progress of influencing factors of poststroke cognitive impairment
Aijun FENG ; Shidong TAN ; Hui PU ; Zongsheng CHEN ; Shizao FEI
Chinese Journal of General Practitioners 2024;23(1):75-80
Poststroke cognitive impairment (PSCI) is a common complication after ischemic stroke, which seriously affects the recovery of neurologic function and lowers the quality of daily life of patients. In a considerable portion of patients, the PSCI is reversible. This article reviews the influencing factors of cognitive impairment after ischemic stroke, including genetic predisposition, demographic factors, lifestyles, clinical manifestations, imaging findings and drug administration, etc. to provide references for prevention and intervention of PSCI.
4.Clinical experience of high-flow nasal cannula oxygen therapy in severe COVID-19 patients.
Guojun HE ; Yijiao HAN ; Qiang FANG ; Jianying ZHOU ; Jifang SHEN ; Tong LI ; Qibin PU ; Aijun CHEN ; Zhiyang QI ; Lijun SUN ; Hongliu CAI
Journal of Zhejiang University. Medical sciences 2020;49(2):232-239
Acute respiratory failure due to acute hypoxemia is the major manifestation in severe coronavirus disease 2019 (COVID-19). Rational and effective respiratory support is crucial in the management of COVID-19 patients. High-flow nasal cannula (HFNC) has been utilized widely due to its superiority over other non-invasive respiratory support techniques. To avoid HFNC failure and intubation delay, the key issues are proper patients, timely application and improving compliance. It should be noted that elder patients are vulnerable for failed HFNC. We applied HFNC for oxygen therapy in severe and critical ill COVID-19 patients and summarized the following experiences. Firstly, to select the proper size of nasal catheter, to locate it at suitable place, and to confirm the nose and the upper respiratory airway unobstructed. Secondly, an initial ow of 60 L/min and 37℃ should be given immediately for patients with obvious respiratory distress or weak cough ability; otherwise, low-level support should be given first and the level gradually increased. Thirdly, to avoid hypoxia or hypoxemia, the treatment goal of HFNC should be maintained the oxygen saturation (SpO) above 95% for patients without chronic pulmonary disease. Finally, patients should wear a surgical mask during HFNC treatment to reduce the risk of virus transmission through droplets or aerosols.
Aged
;
Betacoronavirus
;
isolation & purification
;
Cannula
;
Coronavirus Infections
;
therapy
;
Humans
;
Oxygen
;
administration & dosage
;
Pandemics
;
Pneumonia, Viral
;
therapy
5.Clinical experience of high-flow nasal cannula oxygen therapy in severe corona virus disease 2019 (COVID-19) patients.
Guojun HE ; Yijiao HAN ; Qiang FANG ; Jianying ZHOU ; Jifang SHEN ; Tong LI ; Qibin PU ; Aijun CHEN ; Zhiyang QI ; Lijun SUN ; Hongliu CAI
Journal of Zhejiang University. Medical sciences 2020;49(1):232-239
Acute respiratory failure due to acute hypoxemia is the major manifestation in severe coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 infection. Rational and effective respiratory support is crucial in the management of COVID-19 patients. High-flow nasal cannula (HFNC) has been utilized widely due to its superiority over other non-invasive respiratory support techniques. To avoid HFNC failure and intubation delay, the key issues are proper patients, timely application and improving compliance. It should be noted that elder patients are vulnerable for failed HFNC. We applied HFNC for oxygen therapy in severe and critical COVID-19 patients and summarized the following experiences. Firstly, to select the proper size of nasal catheter, to locate it at suitable place, and to confirm the nose and the upper respiratory airway unobstructed. Secondly, an initial flow of 60 L/min and 37℃ should be given immediately for patients with obvious respiratory distress or weak cough ability; otherwise, low-level support should be given first and the level gradually increased. Thirdly, to avoid hypoxia or hypoxemia, the treatment goal of HFNC should be maintained the oxygen saturation (SpO) above 95% for patients without chronic pulmonary disease. Finally, patients should wear a surgical mask during HFNC treatment to reduce the risk of virus transmission through droplets or aerosols.
Aged
;
Betacoronavirus
;
Cannula
;
Coronavirus Infections
;
complications
;
therapy
;
Humans
;
Hypoxia
;
etiology
;
prevention & control
;
therapy
;
Masks
;
Oxygen
;
administration & dosage
;
Oxygen Inhalation Therapy
;
instrumentation
;
standards
;
Pandemics
;
Pneumonia, Viral
;
complications
;
therapy
6.Cyclin-dependent Kinase 18 Promotes Oligodendrocyte Precursor Cell Differentiation through Activating the Extracellular Signal-Regulated Kinase Signaling Pathway.
Yuchen PAN ; Zeping JIANG ; Dingya SUN ; Zhenghao LI ; Yingyan PU ; Dan WANG ; Aijun HUANG ; Cheng HE ; Li CAO
Neuroscience Bulletin 2019;35(5):802-814
The correct differentiation of oligodendrocyte precursor cells (OPCs) is essential for the myelination and remyelination processes in the central nervous system. Determining the regulatory mechanism is fundamental to the treatment of demyelinating diseases. By analyzing the RNA sequencing data of different neural cells, we found that cyclin-dependent kinase 18 (CDK18) is exclusively expressed in oligodendrocytes. In vivo studies showed that the expression level of CDK18 gradually increased along with myelin formation during development and in the remyelination phase in a lysophosphatidylcholine-induced demyelination model, and was distinctively highly expressed in oligodendrocytes. In vitro overexpression and interference experiments revealed that CDK18 directly promotes the differentiation of OPCs, without affecting their proliferation or apoptosis. Mechanistically, CDK18 activated the RAS/mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase pathway, thus promoting OPC differentiation. The results of the present study suggest that CDK18 is a promising cell-type specific target to treat demyelinating disease.
7.Myt1L Promotes Differentiation of Oligodendrocyte Precursor Cells and is Necessary for Remyelination After Lysolecithin-Induced Demyelination.
Yanqing SHI ; Qi SHAO ; Zhenghao LI ; Ginez A GONZALEZ ; Fengfeng LU ; Dan WANG ; Yingyan PU ; Aijun HUANG ; Chao ZHAO ; Cheng HE ; Li CAO
Neuroscience Bulletin 2018;34(2):247-260
The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2) OPCs was significantly higher than that in mature CC1 oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.
Animals
;
Cell Differentiation
;
physiology
;
Demyelinating Diseases
;
chemically induced
;
Lysophosphatidylcholines
;
toxicity
;
Mice
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins
;
metabolism
;
Oligodendrocyte Precursor Cells
;
cytology
;
metabolism
;
Oligodendroglia
;
cytology
;
metabolism
;
Remyelination
;
physiology
;
Transcription Factors
;
metabolism