1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Programmed death-ligand 1 tumor proportion score in predicting the safety and efficacy of PD-1/PD-L1 antibody-based therapy in patients with advanced non-small cell lung cancer: A retrospective, multicenter, observational study.
Yuequan SHI ; Xiaoyan LIU ; Anwen LIU ; Jian FANG ; Qingwei MENG ; Cuimin DING ; Bin AI ; Yangchun GU ; Cuiying ZHANG ; Chengzhi ZHOU ; Yan WANG ; Yongjie SHUI ; Siyuan YU ; Dongming ZHANG ; Jia LIU ; Haoran ZHANG ; Qing ZHOU ; Xiaoxing GAO ; Minjiang CHEN ; Jing ZHAO ; Wei ZHONG ; Yan XU ; Mengzhao WANG
Chinese Medical Journal 2025;138(14):1730-1740
BACKGROUND:
This study aimed to investigate programmed death-ligand 1 tumor proportion score in predicting the safety and efficacy of PD-1/PD-L1 antibody-based therapy in treating patients with advanced non-small cell lung cancer (NSCLC) in a real-world setting.
METHODS:
This retrospective, multicenter, observational study enrolled adult patients who received PD-1/PD-L1 antibody-based therapy in China and met the following criteria: (1) had pathologically confirmed, unresectable stage III-IV NSCLC; (2) had a baseline PD-L1 tumor proportion score (TPS); and (3) had confirmed efficacy evaluation results after PD-1/PD-L1 treatment. Logistic regression, Kaplan-Meier analysis, and Cox regression were used to assess the progression-free survival (PFS), overall survival (OS), and immune-related adverse events (irAEs) as appropriate.
RESULTS:
A total of 409 patients, 65.0% ( n = 266) with a positive PD-L1 TPS (≥1%) and 32.8% ( n = 134) with PD-L1 TPS ≥50%, were included in this study. Cox regression confirmed that patients with a PD-L1 TPS ≥1% had significantly improved PFS (hazard ratio [HR] 0.747, 95% confidence interval [CI] 0.573-0.975, P = 0.032). A total of 160 (39.1%) patients experienced 206 irAEs, and 27 (6.6%) patients experienced 31 grade 3-5 irAEs. The organs most frequently associated with irAEs were the skin (52/409, 12.7%), thyroid (40/409, 9.8%), and lung (34/409, 8.3%). Multivariate logistic regression revealed that a PD-L1 TPS ≥1% (odds ratio [OR] 1.713, 95% CI 1.054-2.784, P = 0.030) was an independent risk factor for irAEs. Other risk factors for irAEs included pretreatment absolute lymphocyte count >2.5 × 10 9 /L (OR 3.772, 95% CI 1.377-10.329, P = 0.010) and pretreatment absolute eosinophil count >0.2 × 10 9 /L (OR 2.006, 95% CI 1.219-3.302, P = 0.006). Moreover, patients who developed irAEs demonstrated improved PFS (13.7 months vs. 8.4 months, P <0.001) and OS (28.0 months vs. 18.0 months, P = 0.007) compared with patients without irAEs.
CONCLUSIONS
A positive PD-L1 TPS (≥1%) was associated with improved PFS and an increased risk of irAEs in a real-world setting. The onset of irAEs was associated with improved PFS and OS in patients with advanced NSCLC receiving PD-1/PD-L1-based therapy.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Lung Neoplasms/metabolism*
;
Aged
;
B7-H1 Antigen/metabolism*
;
Programmed Cell Death 1 Receptor/metabolism*
;
Adult
;
Aged, 80 and over
;
Immune Checkpoint Inhibitors/therapeutic use*
5.Standardized operational protocol for the China Human Brain Bank Consortium(2nd edition)
Xue WANG ; Zhen CHEN ; Juan-Li WU ; Nai-Li WANG ; Di ZHANG ; Juan DU ; Liang YU ; Wan-Ru DUAN ; Peng-Hao LIU ; Han-Lin ZHANG ; Can HUANG ; Yue-Shan PIAO ; Ke-Qing ZHU ; Ai-Min BAO ; Jing ZHANG ; Yi SHEN ; Chao MA ; Wen-Ying QIU ; Xiao-Jing QIAN
Acta Anatomica Sinica 2024;55(6):734-745
Human brain banks use a standardized protocol to collect,process and store post-mortem human brains and related tissues,along with relevant clinical information,and to provide the tissue samples and data as a resource to foster neuroscience research according to a standardized operating protocols(SOP).Human brain bank serves as the foundation for neuroscience research and the diagnosis of neurological disorders,highlighting the crucial rule of ensuring the consistency of standardized quality for brain tissue samples.The first version of SOP in 2017 was published by the China Human Brain Bank Consortium.As members increases from different regions in China,a revised SOP was drafted by experts from the China Human Brain Bank Consortium to meet the growing demands for neuroscience research.The revised SOP places a strong emphasis on ethical standards,incorporates neuropathological evaluation of brain regions,and provides clarity on spinal cord sampling and pathological assessment.Notable enhancements in this updated version of the SOP include reinforced ethical guidelines,inclusion of matching controls in recruitment,and expansion of brain regions to be sampled for neuropathological evaluation.
6.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
7.Clinical effects of Modified Mahuang Lianqiao Chixiaodou Decoction on patients with chronic eczema
Qing-Xing WANG ; Bu-Xin ZHANG ; Sheng-Dong XU ; Li WANG ; Jing LI ; Ai-Min LIU
Chinese Traditional Patent Medicine 2024;46(9):2943-2949
AIM To investigate the clinical effects of Modified Mahuang Lianqiao Chixiaodou Decoction on patients with chronic eczema.METHODS One hundred and ninety-five patients were randomly assigned into Chinese medicine group(65 cases)for 3-week administration of Modified Mahuang Lianqiao Chixiaodou Decoction,western medicine group(65 cases)for 3-week administration of Levocetirizine Hydrochloride,and combined group(65 cases)for 3-week administration of both Modified Mahuang Lianqiao Chixiaodou Decoction and Levocetirizine Hydrochloride.The changes in clinical effects,clinical indices(EASI score,DQOLS score,TCM syndrome score,PINS score),skin physiological function indicesssss(OCTS,TEWL,WCTC),inflammatory factors(EOT,EOS,NK-κB,CCR3),T lymphocyte subsets(Treg,Th1,Th17,Th22),p38MAPK signaling pathway indices(ERK1,ERK2,mMEK 1,MEK2),recurrence rate and incidence of adverse reactions were detected.RESULTS The combined group demonstrated higher total effective rate than the Chinese medicine group and the western medicine group(P<0.05),along with lower recurrence rate(P<0.05).After the treatment,the combined group displayed lower EASI score,TCM syndrome score,PINS,TEWL,inflammatory factors,Th1,Th17,Th22 and p38MAPK signaling pathway indices than the control group(P<0.05),along with higher DQOLS score,OCTS,WCTC,Treg(P<0.05).The Chinese medicine group exhibited lower incidence of adverse reactions than the other two groups(P<0.05).CONCLUSION For the patients with chronic eczema,Modified Mahuang Lianqiao Chixiaodou Decoction can safely and effectively alleviate skin lesion degree,enhance skin physiological functions,improve T lymphocyte subset,inflammatory factors levels,and regulate p38MAPK signaling pathway based on"Four-in-One"therapy,which exhibits synergistic effect when combined with Levocetirizine Hydrochloride.
9.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
10.Triaging patients in the outbreak of COVID-2019
Guo-Qing HUANG ; Wei-Qian ZENG ; Wen-Bo WANG ; Yan-Min SONG ; Xiao-Ye MO ; Jia LI ; Ping WU ; Ruo-Long WANG ; Fang-Yi ZHOU ; Jing WU ; Bin YI ; Zeng XIONG ; Lu ZHOU ; Fan-Qi WANG ; Yang-Jing TIAN ; Wen-Bao HU ; Xia XU ; Kai YUAN ; Xiang-Min LI ; Xin-Jian QIU ; Jian QIU ; Ai-Min WANG
Chinese Journal of Infection Control 2023;22(3):295-303
In the outbreak of COVID-19,triage procedures based on epidemiology were implemented in a local hospital in Changsha to control the transmission of SARS-CoV-2 and avoid healthcare-associated infection.This re-trospective study analyzed the data collected during the triage period and found that COVID-19 patients were en-riched 7 folds into the Section A designated for patients with obvious epidemiological history.On the other side,nearly triple amounts of visits were received at the Section B for patients without obvious epidemiological history.8 COVID-19 cases were spotted out of 247 suspected patients.More than 50%of the suspected patients were submi-tted to multiple rounds of nucleic acid analysis for SARS-CoV-2 infection.Of the 239 patients who were diagnosed as negative of the virus infection,188 were successfully revisited and none was reported as COVID-19 case.Of the 8 COVID-19 patients,3 were confirmed only after multiple rounds of nucleic acid analysis.Besides comorbidities,delayed sharing of epidemiological history added complexity to the diagnosis in practice.The triaging experience and strategy will be helpful for the control of infectious diseases in the future.

Result Analysis
Print
Save
E-mail