1.Differential Growth Response of Various Crop Species to Arbuscular Mycorrhizal Inoculation.
Mycobiology 2009;37(1):72-76
To investigate the growth response of various crop species to mycorrhizal inoculation, arbuscular mycorrhizal fungi were applied to Glycine max, Vigna angularis, Senna tora, Hordeum vulgare var. hexastichon. Zea mays, Sorghum bicolor, Allium tuberosum, Solanum melongena, and Capsicum annuum. The biomass of the inoculated crops was measured every two weeks for the 12-week growth period. By measuring biomass, we calculated the mycorrhizal responsiveness of the nine crop species. Among the nine crop species, four species showed a significant response to mycorrhizal inoculation. The shoot biomasses of V. angularis, C. annuum, A. tuberosum, and S. tora significantly increased with mycorrhizal inoculation.
Biomass
;
Capsicum
;
Chive
;
Fungi
;
Hordeum
;
Solanum melongena
;
Sorghum
;
Soybeans
;
Zea mays
2.The Observation of Arbuscular Mycorrhizal Roots in Horticultural Plants.
Yee KIM ; Ahn Heum EOM ; Moon Sung TAE ; Sang Sun LEE
Mycobiology 2000;28(3):115-118
To determine the degree of variability among the host plant species in their abilities to become colonized by arbuscular mycorrhizal fungi (AMF), the inoculum for AMF was collected from the various sites in Korea and was inoculated to the three horticultural plants; Tagetes patula, Torenia fournieri, and Salvia splendens. After 4-month growth under greenhouse, mycorrhizal root colonization rates and spore density were measured. The roots of T. patula showed higher colonization rate than both plants of T. fournieri and Salvia splendens. The mycorrhizal root colonization was influenced by both of the AM fungal inoculum and the host species or their interactions. The combination of the host and fungal species was suggested to be important for the application of AMF to horticultural crops.
Colon
;
Fungi
;
Korea
;
Plants
;
Salvia
;
Spores
;
Tagetes
3.Asymbiotic Spore Production of Rhizoglomus intraradices in a Medium Containing Myristate
Mycobiology 2023;51(3):164-168
This study examined the effects of myristate on an asymbiotic culture of Rhizoglomus intraradices, a species of arbuscular mycorrhizal fungi (AMF; Glomeromycota). Mycelial growth and sporulation in a modified medium containing myristate were observed. The findings demonstrated that myristate induced R. intraradices spore formation, with daughter spores having a smaller diameter than the parent spores. This observation is consistent with previous studies on other Rhizoglomus species. Further studies are needed to investigate the potential for continuous culture, mass production using daughter spores, and the application of AMF colonization techniques in plants.
4.Mycorrhization of Quercus spp. with Tuber huidongense and T. himalayense Collected in Korea
Ju-Hui GWON ; Hyeok PARK ; Ahn-Heum EOM
Mycobiology 2022;50(2):104-109
Fungi of the genus Tuber are ectomycorrhizal fungi that form a symbiotic relationship mainly with oak and hazel trees. Tuber spp. exhibit a highly selective host plant preference; thus, for cultivation purposes it is important to select an appropriate host plant for successful mycorrhization. In addition, as mycorrhizal characteristics differ according to Tuber spp., it is necessary to understand the differences in mycorrhizae according to the fungal species. Tuber huidongense and Tuber himalayense were recently discovered in Korea; therefore, we used spore suspensions from these two species to inoculate two species of oak trees, Quercus acutissima and Quercus dentata, to compare colonization rates and morphologies of the mycorrhizae. The colonization rates demonstrated that the different Tuber spp. favored different host plant species. In addition, unique morphological and anatomical characteristics were observed for T. huidongense and T. himalayense depending on the host species. These findings can lead to new economically important agricultural activities related to truffle cultivation in Korea.
5.Effect of Temperature, pH, and Media on the Mycelial Growth ofTuber koreanum
Ju-Hui GWON ; Hyeok PARK ; Ahn-Heum EOM
Mycobiology 2022;50(4):238-243
Members of the genus Tuber are ectomycorrhizal fungi; this genus includes more than 180 species worldwide. In the present study, the optimal pH, temperature, and medium suitable for the mycelial growth of the Korean truffle, Tuber koreanum, were determined. Mycelium of T. koreanum, isolated from fruiting bodies collected in Korea, was used to investigate the effects of these environmental factors. The results showed that malt extract agar and potato dextrose agar were the most suitable for the mycelial growth of T. koreanum when cultured at a pH of 6.0 at 25 C for 30 days.
6.Community of Endophytic Fungi from Alpine Conifers on Mt. Seorak
Mycobiology 2022;50(5):317-325
Endophytic fungi occupy various ecological niches, which reinforces their diversity. As few studies have investigated the endophytic fungi of alpine conifers, we focused on four species of alpine conifers in this study—Abies nephrolepis, Pinus pumila, Taxus cuspidata var. nana, and Thuja koraiensis—and examined them for endophytic fungi. A total of 108 endophytic fungi were isolated. There were four taxa in A. nephrolepis, 12 in P. pumila, 18 in T. cuspidata var. nana, and 17 in T. koraiensis; these were divided into five classes: Agaricomycetes (3.2%), Dothideomycetes (29.0%), Leotiomycetes (15.0%), Sordariomycetes (41.9%), and Orbiliomycetes (1.6%). The most prevalent fungi were Sydowia polyspora (22.7%) and Xylariaceae sp. (22.7%) in P. pumila, Phomopsis juglandina (16.1%) in T. cuspidata var. nana, and Thuja-endophytes sp. 1 (70.0%) in T. koraiensis. However, there was no dominant species growing in A. nephrolepis. Some host plants were analyzed using next-generation sequencing. We obtained 4618 reads for A. nephrolepisand 2268 reads for T. koraiensis. At the genus level, the top three endophytic fungi were Ophiostomataceae_uc (64.6%), Nectriaceae_uc (15.5%), and unclassified organism (18.0%) in A. nephrolepis and Nectriaceae_uc (41.9%), Ophiostomataceae_uc (41.8%), and Magnaporthaceae_uc (9.2%) in T. koraiensis. Our results show that there are different communities of endophytic fungi among different host plants, even if the host plants are in the same region. Such ecological niches are important in terms of the ecological restoration of alpine conifers.
7.Effects of Ectomycorrhizal Fungi on Growth of Seedlings of Pinus densiflora.
Mycobiology 2006;34(4):191-195
This study was conducted to investigate the different effects of ectomycorrhizal fungal (ECMF) species on the growth of seedlings of Pinus densiflora, and the effects of ECMF diversity on plant productivity. A total of five species of ECMF were isolated from root tips of pine seedlings collected from Mt. Songni and used as inocula. Pots containing pine seedlings were inoculated with either a single ECMF species or a mixture of five ECMF species. All of the seedlings formed ECM on their roots except for the control plants. The pine seedlings' growth responses varied by the different ECMF species. Also, pine seedlings inoculated with a mixture of five ECMF species showed the highest growth response. The results of the study suggest that the colonization of diverse species of ECMF will increase plant productivity, and the selection of suitable ECMF species could be an important factor for plant growth.
Colon
;
Efficiency
;
Fungi*
;
Meristem
;
Pinus*
;
Plants
;
Seedlings*
8.Effect of Organic Farming on Spore Diversity of Arbuscular Mycorrhizal Fungi and Glomalin in Soil.
Mycobiology 2009;37(4):272-276
In this study, eight soil samples were collected from organic and conventional farms in a central area of South Korea. Spore communities of arbuscular mycorrhizal fungi (AMF) and glomalin, a glycoprotein produced by AMF, were analyzed. Spores of Glomus clarum, G. etunicatum, G. mosseae, G. sp., Acaulospora longula, A. spinosa, Gigaspora margarita, and Paraglomus occultum were identified at the study sites, based on morphological and molecular characteristics. While Acaulospora longula was the most dominant species in soils at organic farms, Paraglomus occultum was the most dominant species in soils at conventional farms. Species diversity and species number in AMF communities found in soils from organic farms were significantly higher than in soils from conventional farms. Glomalin was also extracted from soil samples collected at organic and conventional farms and was analyzed using both Bradford and enzyme-linked immunosorbent assays. The glomalin content in soils from organic farms was significantly higher than in soils from conventional farms. These results indicate that agricultural practices significantly affect AMF abundance and community structure.
Enzyme-Linked Immunosorbent Assay
;
Fungi
;
Glycoproteins
;
Organic Agriculture
;
Republic of Korea
;
Soil
;
Spores
9.Effects of Soils Containing Arbuscular Mycorrhizas on Plant Growth and Their Colonization.
Ahn Heum EOM ; Yee KIM ; Sang Sun LEE
Mycobiology 2002;30(1):18-21
Four arbuscular mycorrhizal fungal (AMF) inocula collected from three arable sites in Korea were used to determine plant growth, mycorrhizal root colonization rate and spore production in three different host plant species; Sorghum bicolor, Allium fistulosum, Tagetes patula. Growth of plant treated with AMF differed from those without AMF. Different AMF inocula showed significantly different root colonization rates and spore production of AMF on the wild plants, A. fistulosum and T. patula, but did not on the cultivated plant, S. bicolor. Results suggested that indigenous mycorrhizal fungal community would be important factors in mycorrhizal symbiosis, and play important roles in the plant succession.
Allium
;
Colon*
;
Korea
;
Mycorrhizae*
;
Plants*
;
Soil*
;
Sorghum
;
Spores
;
Symbiosis
;
Tagetes
10.Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants.
Mycobiology 2015;43(4):444-449
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level.
Fungi
;
Genetic Variation
;
Plant Roots
;
Plants
;
Rhizosphere