1. Modelling the probability of presence of Aedes aegypti and Aedes albopictus in Iran until 2070
Mohammad SEDAGHAT ; Faramarz OMID ; Ahmad HANAFI-BOJD ; Mohammad KARIMI ; Sajjad HAGHI ; Ahmad HANAFI-BOJD
Asian Pacific Journal of Tropical Medicine 2023;16(1):16-25
Objective: To determine the suitable ecological habitats of Aedes (Ae.) aegypti and Ae. albopictus in Iran due to climate change by the 2070s. Methods: All data relating to the spatial distribution of Ae. aegypti and Ae. albopictus worldwide, which indicated the geographical coordinates of the collection sites of these mosquitoes, were extracted from online scientific websites and entered into an Excel file. The effect of climatic and environmental variables on these mosquitoes was evaluated using the MaxEnt model in the current and future climatic conditions in the 2030s, 2050s, and 2070s. Results: The most suitable areas for the establishment of Ae. aegypti are located in the southern and northern coastal areas of Iran, based on the model outputs. The modelling result for suitable ecological niches of Ae. albopictus shows that in the current climatic conditions, the southern half of Iran from east to west, and parts of the northern coasts are prone to the presence of this species. In the future, some regions, such as Gilan and Golestan provinces, will have more potential to exist/establish Ae. albopictus. Also, according to the different climate change scenarios, suitable habitats for this species will gradually change to the northwest and west of the country. The temperature of the wettest season of the year (Bio8) and average annual temperature (Bio1) were the most effective factors in predicting the model for Ae. aegypti and Ae. albopictus, respectively. Conclusions: It is required to focus on entomological studies using different collection methods in the vulnerable areas of Iran. The future modelling results can also be used for long-term planning to prevent the entry and establishment of these invasive Aedes vectors in the country.
2.Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran.
Ali Reza CHAVSHIN ; ; Mohammad Ali OSHAGHI ; Hasan VATANDOOST ; Ahmad Ali HANAFI-BOJD ; Ahmad RAEISI ; Fatemeh NIKPOOR
Asian Pacific Journal of Tropical Biomedicine 2014;4(1):47-51
OBJECTIVETo identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran.
METHODSWild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested-PCR method.
RESULTSResults showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples.
CONCLUSIONSPresence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.
Animals ; Anopheles ; genetics ; parasitology ; DNA, Mitochondrial ; genetics ; DNA, Protozoan ; genetics ; Eggs ; classification ; parasitology ; Female ; Iran ; Male ; Parasite Load ; Plasmodium ; genetics ; isolation & purification ; Polymerase Chain Reaction ; Sporozoites
3. Situation analysis of cutaneous leishmaniasis in an endemic area, south of Iran
Mansour NAZARI ; Saman NAZARI ; Sasan NAZARI ; Ahmad Ali HANAFI-BOJD ; Ali NAJAFI
Asian Pacific Journal of Tropical Medicine 2017;10(1):92-97
Objective To update current situation of the cutaneous leishmaniasis (CL) in Kazerun County, southwest of Iran and to analyse the epidemiological aspects of the disease during 2005–2015. Methods Data on CL were obtained from the Health Center of Kazerun County, and then were analysed and mapped using SPSS and Arc GIS 10.3. Results A total of 700 cases of CL were recorded during the study period with an overall decreasing trend from 2005 to 2015. More than 60% of the patients were inhabitants of rural areas and males were infected more than females. Although there was not a significant difference between gender, job categories, residence and CL infection (P > 0.05), age groups were significantly different (P < 0.05). But there was no significant correlation between monthly cases of the disease with average temperature (P > 0.05). Most of the acute lesions were found to be present on the hand, leg and face, respectively. The average CL incidence in the study area was calculated as 24.9/100 000 population. A hot spot for the disease was found in southern part of the area (P < 0.05). Conclusions This study revealed that CL is present in Kazerun country. Thus, effective monitoring and sustained surveillance system is crucial in counteracting the disease, and if possible, to eliminate it.
4. Spatial distribution and infection rate of leishmaniasis vectors (Diptera: Psychodidae) in Ardabil Province, Northwest of Iran
Eslam MORADI-ASL ; Eslam MORADI-ASL ; Yavar RASSI ; Ahmad HANAFI-BOJD ; Abedin SAGHAFIPOUR
Asian Pacific Journal of Tropical Biomedicine 2019;9(5):181-187
To determine the spatial distribution and infection rate of sand flies as vectors of Leishmania parasite in Ardabil province, northwest of Iran. Methods: This was a descriptive cross-sectional study. The sand flies were collected from 30 areas in all 10 districts of Ardabil province during 2017. The specimens were caught using the sticky traps. The head and genitalia of sand flies were separated and mounted in Berlese solution for microscopic identification. The Geographical Information System ArcMap10.4.1 software was used to provide the spatial maps. Results: A total of 2 794 sand flies specimens were collected and 22 species of sand flies were identified from the two genera: Phlebotomus and Sergentomyia from Ardabil province. The highest frequency was found in Phlebotomus papatasi (23.7%) followed by Phlebotomus kandelakii (13.0%). The promastigote form of Leishmania infantum parasite has been reported from the three main vectors of visceral leishmaniasis (Phlebotomus kandelakii, Phlebotomus perfiliewi and Phlebotomus tobbi) from Ardabil province, where the spatial distribution map of these visceral leishmaniasis vectors was prepared. Some important species of sand flies such as Phlebotomus kandelakii, Phlebotomus perfiliewi and Phlebotomus tobbi were reported and identified as main and probable vectors of visceral leishmaniasis in Ardabil. Conclusions: According to the Geographic Information System based maps, the frequency of the sand flies as leishmaniasis vectors, the leishmania parasite infection rate and the prevalence of the disease in the central areas of Ardabil province are higher than in other areas in Ardabil province.
5. Fauna and some biological characteristics of Anopheles mosquitoes (Diptera: Culicidae) in Kalaleh County, Golestan Province, northeast of Iran
Aioub SOFIZADEH ; Hamideh EDALAT ; Mohammad Reza ABAI ; Ahmad Ali HANAFI-BOJD
Asian Pacific Journal of Tropical Biomedicine 2016;6(9):730-734
Objective To determine fauna and some ecological aspects of Anopheles mosquitoes in northeast of Iran. Methods In this descriptive study, 3 villages in Kalaleh County were selected in different geographical zones. Anopheles mosquitoes were collected biweekly from May to October using standard dipping method for larvae, and hand catch, total catch, artificial pit shelter as well as night-biting collections on human and animal baits for adults. Results Totally 399 larvae and 2 602 adults of Anopheles mosquitoes were collected and identified as 2 species: Anopheles superpictus s.l. (An. superpictus s.l.) and Anopheles maculipennis s.l. The dominant species was An. superpictus s.l. (92.1%). Activity of these mosquitoes found to be started from middle of May and extended till September with two peaks of activity in July and August. Conclusions An. superpictus s.l. as one of the main malaria vectors in Iran as well as some other parts of the world is the dominant species in the study area. This species has high potential for transmission and possibility of establishing a transmission cycle with low abundance. Other species, Anopheles maculipennis s.l. also has introduced as a malaria vector in northern parts of Iran. As this Anopheles is a complex species, genetic studies are recommended to determine the members of this complex in the study area.
6. Distribution and ecological aspects of sand flies (Diptera: Psychodidae) species in Northeastern Iran
Aioub SOFIZADEH ; Yavar RASSI ; Ahmad Ali HANAFI-BOJD ; Hamidreza SHORAKA ; Fatemeh MESGARIAN ; Sayena RAFIZADEH
Asian Pacific Journal of Tropical Medicine 2018;11(9):526-533
Objective: To determine both the distribution and the ecological characteristics of sand flies in Golestan Province, northeast of Iran in 2016. Methods: In this study, 34 villages were selected based on their geographical conditions. Sticky paper traps were used for collecting the sand flies. Sampling was carried out in each of villages from May to November. In each village, 60 traps for indoors and 60 for outdoors were monthly installed. The species of all collected sand flies were determined using approved morphological keys. Pearson coefficient correlation was used to find the relationship between the number of collected Phlebotomus papatasi from different villages and incidence rate of zoonotic cutaneous leishmaniasis as well as the number of positive cases of the disease. The altitude of the studied villages was extracted from digital elevation model of the area using GIS and vegetation cover density index of the province was extracted from Modis satellite imagery and distribution map of sand flies drown up. Results: Overall, 5 428 sand flies were collected and identified, belonging to 18 species. Phlebotomus wenyoni was reported for the first time from the area in this study. The frequency of sand flies in the villages located in northeast of the Golestan province (the plateau area, lower altitude, arid and semi-arid climates, and lower vegetation cover density), were more than other villages in this province. There was a significant correlation between the number of collected Phlebotomus papatasi and incidence rate of the zoonotic cutaneous leishmaniasis cases in different villages (r=0.837, P=0.019) as well as the number of positive cases of the disease (r=0.688, P<0.001). Conclusions: In the northeaster areas of Golestan Province which is known as the endemic foci of zoonotic cutaneous leishmaniasis, the abundance of sand flies were more and the conditions for their growth and development were more appropriate.
7. Bio-ecology of malaria vectors in an endemic area, Southeast of Iran
Masoud YERYAN ; Masoud YERYAN ; Hamid Rreza BASSERI ; Ahamd Ali HANAFI-BOJD ; Ahmad RAEISI ; Hamideh EDALAT ; Ahmad RAEISI ; Reza SAFARI
Asian Pacific Journal of Tropical Medicine 2016;9(1):32-38
Objective: To determine some bio-ecological aspects of malaria vectors in Jask County, where is targeted for malaria elimination in the national program. Methods: Mosquitoes were collected monthly during 2013-2014 using different collection methods. Subsequently, ELISA test was used to detect the human blood index of mosquitoes. The susceptibility status of Anopheles stephensi was evaluated against the diagnostic dosages of seven WHO recommended insecticides. Results: A total of 3. 650 female and 4. 736 Anopheles larvae were collected including Anopheles stephensi, Anopheles culicifacies s.l., Anopheles dthali, Anopheles fluviatilis s.l., Anopheles moghulensis and Anopheles turkhodi species. Anopheles stephensi was the dominant collected species on human baits and indoors with high rate of unfed and gravid specimens in internal and external window traps. Human blood index was calculated as 14.3% for this species. It was also found to be resistant to DDT and Dieldrin. Conclusions: The collected species had a wide range of habitats, and resting behaviors. With regarding to the presence of most important malaria vectors in Jask, control of the disease may be so complicated; as based on the weather condition it can be transmitted during the whole year, expect for cold months. With this strong potential of transmission, existing population movements in the area may lead to imported cases of malaria and local outbreak(s). So, more specific studies on malaria vectors in high risk areas of Jask County are recommended.
8. Effect of climate change on spatial distribution of scorpions of significant public health importance in Iran
Javad RAFINEJAD ; Ahmad Ali HANAFI-BOJD ; Mehran SHAHI ; Mehran SHAHI ; Shahrokh NAVIDPOUR ; Elham JAHANIFARD
Asian Pacific Journal of Tropical Medicine 2020;13(11):503-514
Objective: To establish a spatial geo-database for scorpions in Iran, and to identify the suitable ecological niches for the most dangerous scorpion species under different climate change scenarios. Methods: The spatial distribution of six poisonous scorpion species of Iran were modeled: Hemiscorpius lepturus, Androctonus crassicauda, Mesobuthus eupeus, Hottentotta saulcyi, Hottentotta zagrosensis, and Odontobuthus (O.) doriae, under RCP2.6 and RCP8.5 climate change scenarios. The MaxEnt ecological niche model was used to predict climate suitability for these scorpion species in the 2030s and 2050s, and the data were compared with environmental suitability under the current bioclimatic data. Results: A total of 73 species and subspecies of scorpions belonging to 19 genera in Iran were recorded. Khuzestan Province has the highest species diversity with 34 species and subspecies. The most poisonous scorpion species of Iran are scattered in the semi-arid climates, at an altitudinal range between 11 m and 2 954 m above sea level. It is projected that O. doriae, Androctonus crassicauda and Mesobuthus eupeus species would be widely distributed in most parts of the country, whereas the most suitable ecological niches for the other species would be limited to the west and/or southwestern part of Iran. Conclusions: Although the environmental suitability for all the species would change under the two climate change scenarios, the change would be more significant for O. doriae under RCP8.5 in the 2050s. These findings can be used as basis for future studies in the areas with the highest environmental suitability for the most dangerous scorpion species to fill the gaps in the ecology of scorpion species in these areas.
9. The impact of climatic variables on the population dynamics of the main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae), in southern Iran
Madineh ABBASI ; Hassan VATANDOOST ; Ahmad HANAFI-BOJD ; Madineh ABBASI ; Abbas RAHIMI FOROUSHANI ; Tohid JAFARI-KOSHKI ; Tohid JAFARI-KOSHKI ; Kamran PAKDAD
Asian Pacific Journal of Tropical Medicine 2020;13(10):448-455
Objective: To determine the significance of temperature, rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran. Methods: Data on the monthly abundance of Anopheles stephensi larvae and adults were gathered from earlier studies conducted between 2002 and 2019 in malaria prone areas of southeastern Iran. Climatic data for the studied counties were obtained from climatology stations. Generalized estimating equations method was used for cluster correlation of data for each study site in different years. Results: A significant relationship was found between monthly density of adult and larvae of Anopheles stephensi and precipitation, max temperature and mean temperature, both with simple and multiple generalized estimating equations analysis (P<0.05). But when analysis was done with one month lag, only relationship between monthly density of adults and larvae of Anopheles stephensi and max temperature was significant (P<0.05). Conclusions: This study provides a basis for developing multivariate time series models, which can be used to develop improved appropriate epidemic prediction systems for these areas. Long-term entomological study in the studied sites by expert teams is recommended to compare the abundance of malaria vectors in the different areas and their association with climatic variables. Abbasi Madineh 1 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran; Infectious and Tropical Diseases Research Center,Tabriz University of Medical Sciences, Tabriz Rahimi Foroushani Abbas 2 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran Jafari-Koshki Tohid 3 Molecular Medicine Research Center; Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz Pakdad Kamran 4 Department of Parasitology & Mycology, Paramedical School, Shahid Beheshti University of Medical Sciences, Tehran Vatandoost Hassan 5 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran Hanafi-Bojd Ahmad 6 Deparment of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran WHO. Malaria report 2019. Geneva: WHO; 2019. Vatandoost H, Raeisi A, Saghafipour A, Nikpour F, Nejati J. Malaria situation in Iran: 2002-2017. Malar J 2019; 18: 200. Hanafi-Bojd AA, Azari-Hamidian S, Vatandoost H, Charrahy Z. Spatio-temporal distribution of malaria vectors (Diptera: Culicidae) across different climatic zones of Iran. Asian Pac J Trop Med 2011; 6: 498-504. Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan Province, southern Iran. Acta Trop 2006; 97(2): 196-203. Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop 2014; 139: 39-43. Gayan Dharmasiri G, Yashan Perera A, Harishchandra J, Herath H, Aravindan K, Jayasooriya HTR, et al. First record of Anopheles stephensi in Sri Lanka: A potential challenge for prevention of malaria reintroduction. Malar J 2017; 16: 326. Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop 2018; 188: 180-186. Zhou G, Munga S, Minakawa N. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 2007; 77(1): 29-35. Bashar K, Tuno N. Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasites Vectors 2014; 7: 442. Gardiner LS. Climate change and vector-borne disease. University Corporation for Atmospheric Research. 2018. [Online]. Available from: https://scied.ucar.edu/longcontent/climate-change-and-vector-borne- disease [Accessed on 9 June 2019]. Patz JA, Lindsay SW. New challenges, new tools: The impact of climate change on infectious diseases. Curr Opin Microbiol 1999; 2(4): 445-451. Khormi HM, Kumar L. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia. Geospat Health 2016; 11(3). doi: 10.4081/gh.2016.416. Ren Z, Wang D, Ma A, Hwang J, Bennett A, Sturrock HJW, et al. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination. Sci Rep 2016; 6: 20604. Campbell-lendrum D, Woodruff R. Climate change: Quantifying the health impact at national and local levels. Geneva: World Health Organization; 2007. Hanafi-Bojd AA. Using of remote sensing and geographical information system for estabiling a malaria monitoring system in the Bashadgard endemic focus, Hormozgan Province, Iran. Ph.D. Thesis. Tehran University of Medical Sciences; 2010. No. 4526. Mohammadkhani M, Khanjani N, Bakhtiari B, Sheikhzadeh K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol Control 2016; 1: 205-210. Statistical Center of Iran. Country statistical yearbook. 1st ed. Iran: Management & Planning Organization; 2018, p.100-120. Basseri HR, Moosakazemi SH, Yosafi S. Mohebali M, Hajaran H, Jedari M. Anthropophily of malaria vectors in Kahnouj district, south of Kerman, Iran. Iran J Public Health 2005; 34(2): 27-35. Fathian M, Vatandoost H, Moosa-Kazemi H, Raeisi A, Yaghoobi-Ershadi MR, Oshaghi MA, et al. Susceptibility of Culicidae mosquitoes to some insecticides recommended by WHO in a malaria endemic area of Southeastern Iran. J Arthropod-Borne Dis 2015; 9(1): 22-34. Mojahedi A, Basseri HR, Raeisi A, Pakari A. Bioecological characteristics of malaria vectors in different geographical areas of Bandar Abbas County, 2014. J Prev Med 2016; 3(1): 18-25. Nedjati J. The study on some bioecological characteristics of malaria vectors and monitoring of their suseptibility levels to some insecticides in Sarbaz county, Sistan va Baluchestan province. MSc. Thesis. Tehran University of Medical Sciences; 2011. No. 5046. Poudat A. Epidemiological survey of malaria in Bandar Abbas County, 1998-2002. MSc. Thesis. Tehran University of Medical Sciences; 2003. No. 3375. Yeryan M, Basseri HR, Hanafi-Bojd AA, Raeisi A, Edalat H, Safari R. Bio-ecology of malaria vectors in an endemic area, Southeast of Iran. Asian Pac J Trop Med 2016; 9(1): 32-38. Iran Meteorological Organization. Specialized products and services weather. 2019. [Online]. Available from: https://data.irimo.ir/ [Accessed on 10 April 2019]. Cui J. QIC program and model selection in GEE analyses. Stata J 2007; 7(2): 209-220. Aytekin S, Aytekin AM, Alten B. Effect of different larval rearing temperatures on the productivity (R0) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics. J Vec Ecol 2009; 34: 32-42. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J 2008; 7: 141. Simon-Oke IA, Olofintoye LK. The effect of climatic factors on the distribution and abundance of mosquito vectors in Ekiti State. J Biol Agri Healthcare 2015; 5(9): 142-146. Jemal Y, Al-Thukair AA. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi J Biol Sci 2016; 25(8):1593-1602. Msugh-Ter MM, Aondowase DA, Terese AE. Association of meteorological factors with two principal malaria vector complexes in the University of Agriculture Makurdi community, Central Nigeria. Am J Entomol 2017; 1(2): 31-38. [31 ]Kabbale FG, Akol AM, Kaddu JB, Ambrose W. Biting patterns and seasonality of Anopheles gambiae sensu lato and Anopheles funestus mosquitoes in Kamuli District, Uganda Onapa. Parasit Vectors 2013; 6: 340. Paaijmans KP, Wandago OM, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One 2007; 2(11): e1146. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science 2001; 293: 2248-2251. Koenraadt CJ, Paaijmans KP, Schneider P, Githeko AK, Takken W. Low level vector survival explains unstable malaria in the western Kenya highlands. Trop Med Int Health 2006; 11(8): 1195-1205. Munga S, Minakawa N, Zhou G, Githeko AK, Yan G. Survivorship of immature stages of Anopheles gambiae s.l. (Diptera: Culicidae) in natural habitats in western Kenya highlands. J Med Entomol 2007; 44: 758-764. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes due to deforestation on the survivorship and reproductive fitness of Anopheles gambiae in Western Kenya Highlands. Am J Trop Med Hyg 2006; 74: 772-778. Afrane YA, Githeko AK, Yan G. The Ecology of Anopheles mosquitoes under climate change: Case studies from the effects of environmental changes in East Africa highlands. Ann Acad Sci 2012; 1249: 204-210. Abbasi F, Babaeian I, Malboosi SH, Asmari M, Mokhtari LG. Climate change assessment over Iran during future decades, using statistical downscaling of ECHO-G model. J Geogr Res 2012; 104: 205-230 (In Persian).
10. Climate change and potential distribution of zoonotic cutaneous leishmaniasis in Central Iran: Horizon 2030 and 2050
Babak SHIRAVAND ; Abbas Ali Dehghani TAFTI ; Ahmad Ali HANAFI-BOJD ; Mohammad Reza ABAI ; Ali ALMODARRESI ; Masoud MIRZAEI
Asian Pacific Journal of Tropical Medicine 2019;12(5):204-215
Objective: To investigate and predict the effects of climate change on the potential distribution of the main vector and reservoir hosts of the disease in Yazd province in the future. Methods: Distribution data for vector and reservoir hosts of zoonotic cutaneous leishmaniasis in Yazd province were obtained from earlier studies conducted in the area. MaxEnt ecological niche modeling was used to predict environmental suitability. BCC-CSM1-1(m) model and two climate change scenarios, RCP 4.5 and RCP 8.5 were used for horizons 2030 and 2050 climate projections. Future projections were based on data of a regional climate change model. Results: With both scenarios in 2030 and 2050, the results of jackknife test indicated that the mean temperature of wettest quarter and temperature annual range had the greatest effect on the model for the vector and the reservoir hosts, respectively. Conclusions: The climate conditions are the major determinants of zoonotic cutaneous leishmaniasis incidence rate in Yazd Province. These climate conditions provide favorable habitats for ease transmission of zoonotic cutaneous leishmaniasis in this endemic area. Habitats suitability for the vector and reservoir will be expanding in the coming years compared with the current conditions, such that, in horizon 2030 & 2050, the probability of the presence of the vector and reservoir within 38 580 and 37 949 km