1.Therapeutic Observation of Vesiculation Moxibustion plus Levofloxacin for Chronic Bronchitis
Afu CHEN ; Ruili WANG ; Jiaoying ZHANG
Shanghai Journal of Acupuncture and Moxibustion 2015;(12):1169-1171
ObjectiveTo observe the clinical efficacy of vesiculation moxibustion plus Levofloxacin in treating chronic bronchitis.MethodEighty-three eligible patients with chronic bronchitis were randomized into an observation group of 43 cases and a control group of 40 cases. The control group was intervened by orally taking Levofloxacin,while the observation group was additionally intervened by vesiculation moxibustion. The clinical efficacy in the two groups and the safety of vesiculation moxibustion were evaluated.ResultThere was a significant difference in comparing the total effective rate between the two groups (P<0.05), and the observation group was superior to the control group; vesiculation didn’t cause fever, obvious swelling, or big blisters, etc.ConclusionVesiculation moxibustion plus Levofloxacin can produce a satisfactory clinical efficacy in treating chronic bronchitis, and it’s safe and reliable without obvious adverse reactions and worth application in clinic.
2.5-Formylhonokiol exerts anti-angiogenesis activity via inactivating the ERK signaling pathway.
Wei ZHU ; Afu FU ; Jia HU ; Tianen WANG ; Youfu LUO ; Ming PENG ; Yinghua MA ; Yuquan WEI ; Lijuan CHEN
Experimental & Molecular Medicine 2011;43(3):146-152
Our previous report has demonstrated that 5-formylhonokiol (FH), a derivative of honokiol (HK), exerts more potent anti-proliferative activities than honokiol in several tumor cell lines. In present study, we first explored the antiangiogenic activities of 5-formylhonokiol on proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) for the first time in vitro. Then we investigated the in vivo antiangiogenic effect of 5-formylhonokiol on zebrafish angiogenesis model. In order to clarify the underlying molecular mechanism of 5-formylhonokiol, we investigated the signaling pathway involved in controlling the angiogenesis process by western blotting assay. Wound-healing results showed that 5-formylhonokiol significantly and dose-dependently inhibited migration of cultured human umbilical vein enthothelial cells. The invasiveness of HUVEC cells was also effectively suppressed at a low concentration of 5-formylhonokiol in the transwell assay. Further F-actin imaging revealed that inhibitory effect of 5-formylhonokiol on invasion may partly contribute to the disruption of assembling stress fiber. Tube formation assay, which is associated with endothelial cells migration, further confirmed the anti-angiogenesis effect of 5-formylhonokiol. In in vivo zebrafish angiogenesis model, we found that 5-formylhonokiol dose-dependently inhibited angiogenesis. Furthermore, western blotting showed that 5-formylhonokiol significantly down-regulated extracellular signal-regulated kinase (ERK) expression and inhibited the phosphorylation of ERK but not affecting the total protein kinase B (Akt) expression and related phosphorylation, suggesting that 5-formylhonokiol might exert anti-angiogenesis capacity via down-regulation of the ERK signal pathway. Taken together, these data suggested that 5-formylhonokiol might be a viable drug candidate in antiangiogenesis and anticancer therapies.
Actins/metabolism
;
Angiogenesis Inhibitors/*pharmacology
;
Animals
;
Antineoplastic Agents, Phytogenic/pharmacology
;
Biphenyl Compounds/*pharmacology
;
Blotting, Western
;
Cell Line, Tumor
;
Cell Movement/drug effects
;
Cell Proliferation/drug effects
;
Cells, Cultured
;
Dose-Response Relationship, Drug
;
Drugs, Chinese Herbal
;
Embryo, Nonmammalian/drug effects/metabolism
;
Endothelium, Vascular/*drug effects/metabolism
;
Extracellular Signal-Regulated MAP Kinases/*antagonists & inhibitors/metabolism
;
Humans
;
Lignans/*pharmacology
;
Neovascularization, Physiologic/*drug effects
;
Signal Transduction/*drug effects
;
Umbilical Veins/cytology
;
Wound Healing
;
Zebrafish/embryology/metabolism