1.Effect of adipose tissue extract on promoting angiogenesis and adipogenesis in tissue engineering chamber in vivo.
Zijing LU ; Yaodong YUAN ; Yen SHI ; Qiang CHANG ; Jianhua GAO
Chinese Journal of Plastic Surgery 2015;31(3):209-214
OBJECTIVETo evaluate the influence of adipose tissue extract on inducing angiogenesis and adipogenesis in adipose tissue engineering chamber in vivo.
METHODS6 months' healthy New Zealand rabbits (n = 64) were picked. The inguinal fat pads were cultured, centrifuged, filtered, and the liquid was called adipose tissue extract (ATE). Two adipose tissue engineering chamber were built in the rabbit's back. A week later, 0.2 ml normal saline (control group, left) and 0. 2 ml ATE (experimental group, right) was respectively injected into the chamber. The contents were evaluated morphometrically, histologically and immunohistochemically 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks and 7 weeks after injection. 8 rabbits were observed each time. The data regarding the number of the volume of fat flap and blood capillary at each time point were analyzed by paired t test.
RESULTSAfter injection, new tissue volume was significantly increased in the experimental group [(5.12 ± 0.22) ml], compared with that in control group [(4.90 ± 0.15) ml]. Early angiogenesis was also increased after ATE injection and the total number of capillaries reached peak 1 week after injection, which was (72.80 ± 9.67) in experimental group and (51.40 ± 6.09) in control group. In the mid-term of experimental period, earlier adipogenesis appeared in experimental group. In the later period, the outer capsule of the new construction was thinner in experimental group which reduced the suppression of the adipogenesis.
CONCLUSIONSATE can promote the angiogenesis and adipogenesis in the chamber, and reduce the capsule contracturing, so as to induce the large volume of adipose tissue regeneration
Adipogenesis ; drug effects ; physiology ; Adipose Tissue ; chemistry ; physiology ; Animals ; Neovascularization, Physiologic ; drug effects ; Rabbits ; Regeneration ; Tissue Engineering ; instrumentation ; Tissue Extracts ; pharmacology
2.Supplementation of Fermented Barley Extracts with Lactobacillus Plantarum dy-1 Inhibits Obesity via a UCP1-dependent Mechanism.
Xiang XIAO ; Juan BAI ; Ming Song LI ; Jia Yan ZHANG ; Xin Juan SUN ; Ying DONG
Biomedical and Environmental Sciences 2019;32(8):578-591
OBJECTIVE:
We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.
METHODS:
In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).
RESULTS:
In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.
CONCLUSION
These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.
3T3 Cells
;
Adipocytes
;
drug effects
;
physiology
;
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Adipose Tissue, White
;
drug effects
;
physiology
;
Animal Feed
;
analysis
;
Animals
;
Anti-Obesity Agents
;
administration & dosage
;
metabolism
;
Cell Differentiation
;
drug effects
;
Diet
;
Fermentation
;
Hordeum
;
chemistry
;
Lactobacillus plantarum
;
chemistry
;
Male
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
Plant Extracts
;
chemistry
;
Probiotics
;
administration & dosage
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Uncoupling Protein 1
;
genetics
;
metabolism
3.Anti-obesity effects of Lysimachia foenum-graecum characterized by decreased adipogenesis and regulated lipid metabolism.
Jong Bae SEO ; Sung Sik CHOE ; Hyun Woo JEONG ; Sang Wook PARK ; Hyun Jung SHIN ; Sun Mi CHOI ; Jae Young PARK ; Eun Wook CHOI ; Jae Bum KIM ; Dong Seung SEEN ; Jae Yeon JEONG ; Tae Gyu LEE
Experimental & Molecular Medicine 2011;43(4):205-215
Lysimachia foenum-graecum has been used as an oriental medicine with anti-inflammatory effect. The anti-obesity effect of L. foenum-graecum extract (LFE) was first discovered in our screening of natural product extract library against adipogenesis. To characterize its anti-obesity effects and to evaluate its potential as an anti-obesity drug, we performed various obesity-related experiments in vitro and in vivo. In adipogenesis assay, LFE blocked the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 2.5 microg/ml. In addition, LFE suppressed the expression of lipogenic genes, while increasing the expression of lipolytic genes in vitro at 10 microg/ml and in vivo at 100 mg/kg/day. The anti-adipogenic and anti-lipogenic effect of LFE seems to be mediated by the inhibition of PPARgamma and C/EBPalpha expression as shown in in vitro and in vivo, and the suppression of PPARgamma activity in vitro. Moreover, LFE stimulated fatty acid oxidation in an AMPK-dependent manner. In high-fat diet (HFD)-induced obese mice (n = 8/group), oral administration of LFE at 30, 100, and 300 mg/kg/day decreased total body weight gain significantly in all doses tested. No difference in food intake was observed between vehicle- and LFE-treated HFD mice. The weight of white adipose tissues including abdominal subcutaneous, epididymal, and perirenal adipose tissue was reduced markedly in LFE-treated HFD mice in a dose-dependent manner. Treatment of LFE also greatly improved serum levels of obesity-related biomarkers such as glucose, triglycerides, and adipocytokines leptin, adiponectin, and resistin. All together, these results showed anti-obesity effects of LFE on adipogenesis and lipid metabolism in vitro and in vivo and raised a possibility of developing LFE as anti-obesity therapeutics.
3T3-L1 Cells
;
Adipogenesis/*drug effects
;
Adipose Tissue/drug effects/metabolism
;
Adipose Tissue, White
;
Animals
;
Anti-Obesity Agents/administration & dosage/pharmacology/*therapeutic use
;
Body Weight/drug effects
;
CCAAT-Enhancer-Binding Protein-alpha/genetics
;
Cell Differentiation/drug effects
;
Eating/drug effects
;
Fatty Acids/metabolism
;
Gene Expression/drug effects
;
Lipid Metabolism/*drug effects
;
Lipids
;
Lipogenesis/drug effects
;
Mice
;
Mice, Inbred C57BL
;
Obesity/prevention & control
;
PPAR gamma/antagonists & inhibitors/genetics
;
Plant Extracts/*pharmacology
;
Plants, Medicinal
;
Primulaceae/*chemistry
4.Adipose differentiation and adipose tissue engineering of bone marrow-derived mesenchymal stem cells using pluronic F-127 hydrogel in vitro.
Hongfu WU ; Yubin DENG ; Yunfa YAN ; Daping QUAN ; Meijun SI
Journal of Biomedical Engineering 2011;28(6):1148-1153
The aim of this study is to investigate the growth and proliferation of bone marrow mesenchymal stem cells (BMSCs) three-dimensionally cultured in Pluronic F-127 gel, in order to explore the cellular compatibility of gel and to investigate the feasibility of BMSCs differentiating into adipocytes in gel. Rat BMSCs were isolated from adult bone marrow, and then cultured and amplified in vitro. The BMSCs derived from the 4th passage were seeded on the scaffolds and incubated in adipogenic stimuli culture to differentiate into adipocytes. BMSCs were dispersed into gel and cultured in vitro for two weeks then the status of adhesion, growth and proliferation of the cells were observed. The edipogenic differentiation of the BMSCs was assessed by cellular morphology and further confirmed by Oil Red O staining. BMSCs were able to attach, grow and proliferate well in Pluronic F-127 gel. The BMSCs differentiated into adipocytes in gel in the presence of adipogenic stimuli over a period of 2 weeks. After only 4 days of adipogenic induction, small lipid droplets were observed within BMSCs in gel wells treated with differentiation media. At the end of 14 days, in the presence of differentiation media in gel, the size of the lipid droplets increased to occupy most of the cytoplasm, consistent with differentiation of BMSCs into adipocytes. Lipid droplets in differentiating BMSCs were positively stained with Oil Red O in the presence of differentiation media in the Pluronic F-127 treatment. We demostrated BMSCs incubated in the 3D Pluronic F-127 gel scaffolds could be induced and differentiated into adipocytes. The system for inducing differentiation of BMSCs into adipocytes is promising to apply in the construction of tissue engineering adipose tissue and the repair of fat injury, and Pluronic F-127 gel may be a suitable scaffold for cellular therapy of BMSCs.
Adipocytes
;
cytology
;
Adipose Tissue
;
cytology
;
Animals
;
Bone Marrow Cells
;
cytology
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Hydrogels
;
chemistry
;
Mesenchymal Stromal Cells
;
cytology
;
Poloxamer
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Tissue Engineering
5.Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet.
Yong ZHANG ; Qing XU ; Ying Hua LIU ; Xin Sheng ZHANG ; Jin WANG ; Xiao Ming YU ; Rong Xin ZHANG ; Chao XUE ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2015;28(2):97-104
OBJECTIVETo investigate activation of brown adipose tissue (BAT) stimulated by medium-chain triglyceride (MCT).
METHODS30 Male C57BL/6J obese mice induced by fed high fat diet (HFD) were divided into 2 groups, and fed another HFD with 2% MCT or long-chain triglyceride (LCT) respectively for 12 weeks. Body weight, blood biochemical variables, interscapular brown fat tissue (IBAT) mass, expressions of mRNA and protein of beta 3-adrenergic receptors (β3-AR), uncoupling protein-1 (UCP1), hormone sensitive lipase (HSL), protein kinase A (PKA), and adipose triglyceride lipase (ATGL) in IBAT were measured.
RESULTSSignificant decrease in body weight and body fat mass was observed in MCT group as compared with LCT group (P<0.05) after 12 weeks. Greater increases in IBAT mass was observed in MCT group than in LCT group (P<0.05). Blood TG, TC, LDL-C in MCT group were decreased significantly, meanwhile blood HDL-C, ratio of HDL-C/LDL-C and norepinephrine were increased markedly. Expressions of mRNA and protein of β3-AR, UCP1, PKA, HSL, ATGL in BAT were greater in MCT group than in LCT group (P<0.05).
CONCLUSIONOur results suggest that MCT stimulated the activation of BAT, possible via norepinephrine pathway, which might partially contribute to reduction of the body fat mass in obese mice fed high fat diet.
Adipose Tissue, Brown ; drug effects ; Adiposity ; drug effects ; Animals ; Dietary Fats ; administration & dosage ; pharmacology ; Ion Channels ; genetics ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondrial Proteins ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Triglycerides ; chemistry ; pharmacology ; Uncoupling Protein 1 ; Weight Loss
6.TRPV1 channel-mediated thermogenesis is a common mode for the Chinese pungent-hot or pungent-warm herbs to demonstrate their natures.
Feng SUI ; Li DAI ; Qian LI ; Hai-yu ZHOU ; Hong-dan ZHAN ; Hai-ru HUO ; Ting-liang JIANG
Acta Pharmaceutica Sinica 2015;50(7):836-841
To further uncover the scientific significance and molecular mechanism of the Chinese herbs with pungent hot or warm natures, endogenous and exogenous expression systems were established by isolation of dorsal root ganglion (DRG) neurons and transfection of HEK293 cells with TRPV1 channel gene separately. On this basis, the regulation action of capsaicin, one main ingredient from chili pepper, on TRPV1 channel was further explored by using confocal microscope. Besides, the three-sites one-unit technique and method were constructed based on the brown adipose tissue (BAT), anal and tail skin temperatures. Then the effect of capsaicin on mouse energy metabolism was evaluated. Both endogenous and exogenous TRPV1 channel could be activated and this action could be specifically blocked by the TRPV1 channel inhibitor capsazepine. Simultaneously, the mice's core body temperature and BAT temperature fall down and then go up, accompanied by the increase of temperature of the mice's tail skin. Promotion of the energy metabolism by activation of TRPV1 channel might be the common way for the pungent-hot (warm) herbs to demonstrate their natures.
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Animals
;
Capsaicin
;
analogs & derivatives
;
pharmacology
;
Energy Metabolism
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Mice
;
Neurons
;
drug effects
;
physiology
;
Plants, Medicinal
;
chemistry
;
TRPV Cation Channels
;
physiology
;
Temperature
;
Thermogenesis
7.Effect of hawthorn flavanone on blood-fat and expression of lipogenesis and lipolysis genes of hyperlipidemia model mouse.
Weihua XIE ; Chao SUN ; Shumin LIU
China Journal of Chinese Materia Medica 2009;34(2):224-229
OBJECTIVEIn order to investigate the possible mechanism of its function to degrade lipid, we detect the effects of hawthorn flavanone to the influence on blood-fat levels and adipogenesis genes transcription expression in fat and muscle tissue of hyperlipoidemia mouse.
METHODIn this experiment, a total of 48 mouse were randomised to four groups and irrigated with two different concentrations (1.5 g kg(-1) body weight and 3.0 g kg(-1) body weight) of hawthorn flavanone, and killed in 0 h, 1 h, 2 h and 4 h. To estimate the content of TC, TG and HCL-C in blood: Total RNA was isolated from adipose and muscle, Real-time RT-PCR was used to analyze expression changes of adipogenesis genes (SREBP-1c, FAS, HSL and TGH) with time series; to analyze the correlation between TG in blood and some kinds of adipogenesis genes and the ratio of FAS/HARMEAN (HSL, TGH) mRNA in adipose.
RESULTHawthorn flavanone was able to cut down the level ofTC, TG and HDL significantly in blood and achieved the lowest level at 1 h. In adipose tissue, hawthorn flavanone up-regulated FAS, HSL and TGH, and achieved the level of significance (P<0.05), the expression level of FAS and TGH was ascend after 1 h, but HSL descend. The expression level of SREBP-1c was descend rapidly and achieved the level of significance after treating with hawthorn flavanone at 1 h (P<0.05), after that it rise again to even higher than the level of before treatment. After treating with hawthorn flavanone, the ratio of FAS/HARMEAN (HSL, TGH) in adipose was significantly descend and achieved the lowest level at 1 h (P<0.01), but it was descendsubsequently. In muscle tissue, hawthorn flavanone was able to significantly up-regulated the expression of FAS and HSL and lower dose group showed greater increasing, the change of SREBP-1c was similar in adipose tissue except the more heavily upgrade.
CONCLUSIONHawthorn flavanone had the function of depressing the concentration of blood-fat, it co-adjusted lipid metabolism of animal by regulating the transcription expression of FAS, HSL, TGH and SREBP-1c especially HSL and SREBP-1c transcription level.
Adipose Tissue ; drug effects ; metabolism ; Animals ; Crataegus ; chemistry ; Flavanones ; pharmacology ; Gene Expression Regulation ; drug effects ; Hyperlipidemias ; blood ; genetics ; Lipids ; blood ; Lipogenesis ; drug effects ; Lipolysis ; drug effects ; genetics ; Male ; Mice ; RNA, Messenger ; genetics ; metabolism ; Sterol Regulatory Element Binding Protein 1 ; genetics ; Triglycerides ; blood ; Up-Regulation ; drug effects ; fas Receptor ; genetics
8.Epimedium-derived flavonoids modulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats via Wnt/β-catenin signal pathway activation.
Ying-xing XU ; Cheng-liang WU ; Yan WU ; Pei-jian TONG ; Hong-ting JIN ; Nan-ze YU ; Lu-wei XIAO
Chinese journal of integrative medicine 2012;18(12):909-917
OBJECTIVETo observe the function of wnt/β-catenin signal pathway on the process that epimedium-derived flavonoids (EFs) regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, and to provide an experimental evidence for the mechanism of EFs on treating postmenopausal osteoporosis.
METHODSBone marrow stromal cells from ovariectomized rats were separated and cultivated in the condition of osteoinductive medium or liquid medium for 15 days. Low- (1 μg/mL), medium- (10 μg/mL) and high- (100 μg/mL) dose EFs were administrated correspondingly. Alkaline phosphatase (ALP) staining, ALP activity determination, oil red O staining and realtime polymerese chain reaction (RT-PCR) were used to determine the effect of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats. Moreover, in order to explore the mechanism of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, Dickkopf-related protein 1 (DKK1) was used in the medium group. Enzymelinked immunosorbent assay (ELISA) and RT-PCR were used to determine mRNA levels of β-catenin, low density lipoprotein receptor-related protein 5 (LRP5) and T cell factor (TCF) protein, known as wnt/β-catenin signal pathway related factors.
RESULTSEFs increased mRNA expression levels of ALP and early osteoblast differentiation factors, such as runt-related transcription factor 2 (Runx2), osteocalcin and collagen I, and decreased mRNA expression levels of fat generation factors, such as peroxisome proliferator activated receptor gamma 2 (PPARγ-2) and CCAAT enhancer-binding protein-α (C/EBPα) in a dose-dependent manner. While osteoblast differentiation factors were down-regulated, fat generation factors were up-regulated when DKK1 was applied. Also EFs up-regulated mRNA expression levels of β-catenin, LRP5 and TCF protein which could be blocked by DKK1.
CONCLUSIONEFs regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats by activating wnt/β-catenin signal pathway, which may be an important molecular mechanism of EFs on treating postmenopausal osteoporosis.
Adipose Tissue ; cytology ; drug effects ; metabolism ; Animals ; Base Sequence ; Bone and Bones ; cytology ; drug effects ; metabolism ; Cell Differentiation ; drug effects ; DNA Primers ; Enzyme-Linked Immunosorbent Assay ; Epimedium ; chemistry ; Female ; Flavonoids ; pharmacology ; Flow Cytometry ; Mesenchymal Stromal Cells ; cytology ; drug effects ; metabolism ; Rats ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; Wnt Proteins ; metabolism ; beta Catenin ; metabolism
9.Changes of biomarkers with oral exposure to benzo(a)pyrene, phenanthrene and pyrene in rats.
Hwan Goo KANG ; Sang Hee JEONG ; Myung Haing CHO ; Joon Hyoung CHO
Journal of Veterinary Science 2007;8(4):361-368
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants present in air and food. Among PAHs, benzo(a)pyrene(BaP), phenanthrene (PH) and pyrene (PY) are considered to be important for their toxicity or abundance. To investigate the changes of biomarkers after PAH exposure, rats were treated with BaP (150 microgram/kg) alone or with PH (4,300 microgram/kg) and PY (2,700 microgram/kg) (BPP group) by oral gavage once per day for 30 days. 7-ethoxyresorufin-O-deethylase activity in liver microsomal fraction was increased in only BaP groups. The highest concentration (34.5 ng/g) of BaP, was found in muscle of rats treated with BaP alone at 20 days of treatment; it was 23.6 ng/g in BPP treated rats at 30 days of treatment. The highest PH concentration was 47.1 ng/g in muscle and 118.8 ng/g in fat, and for PY it was 29.7 ng/g in muscle and 219.9 ng/g in fat, in BPP groups. In urine, 114-161 ng/ml 3-OH-PH was found, while PH was 41-69 ng/ml during treatment. 201-263 ng/ml 1-OH-PY was found, while PH was 9-17 ng/ml in urine. The level of PY, PH and their metabolites in urine was rapidly decreased after withdrawal of treatment. This study suggest that 1-OH-PY in urine is a sensitive biomarker for PAHs; it was the most highly detected marker among the three PAHs and their metabolites evaluated during the exposure period and for 14 days after withdrawal.
Adipose Tissue/chemistry/drug effects
;
Animals
;
Benzo(a)pyrene/analysis/metabolism/*toxicity
;
Biological Markers/metabolism/urine
;
Blood Chemical Analysis
;
Body Weight/drug effects
;
Cytochrome P-450 CYP1A1/metabolism
;
Environmental Pollutants/blood/metabolism/*toxicity/urine
;
Female
;
Liver/drug effects/enzymology
;
Lymphocytes/drug effects/metabolism
;
Muscle, Skeletal/drug effects/metabolism
;
Organ Size/drug effects
;
Phenanthrenes/blood/metabolism/*toxicity/urine
;
Pyrenes/analysis/metabolism/*toxicity
;
Rats
;
Rats, Sprague-Dawley
;
Time Factors
10.Synthesis, solubility, lipids-lowering and liver-protection activities of sulfonated formononetin.
Qiu-ya WANG ; Qing-hua MENG ; Zun-ting ZHANG ; Zhen-jun TIAN ; Hui LIU
Acta Pharmaceutica Sinica 2009;44(4):386-389
A water-soluble compound, sodium formononetin-3'-sulfonate with good lipid-lowering and liver-protection activities was synthesized. It was synthesized by sulfonation reaction, and its structure was characterized by IR, NMR and elemental analyses. The solubility of sodium formononetin-3'-sulfonate in water and n-octanol/water partition coefficient were determined by UV spectrophotometry. The lipid-lowering and liver-protection activities of sodium formononetin-3'-sulfonate were tested by using rat's high fat model induce by feeding with high fat food. The results showed that sodium formononetin-3'-sulfonate not only had favorable water, solubility but also had good lipid-lowering and liver-protection activities.
Adipose Tissue
;
drug effects
;
Alanine Transaminase
;
metabolism
;
Animals
;
Aspartate Aminotransferases
;
metabolism
;
Cholesterol
;
blood
;
Cholesterol, HDL
;
blood
;
Cholesterol, LDL
;
blood
;
Hypolipidemic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Isoflavones
;
chemical synthesis
;
chemistry
;
pharmacology
;
Lipids
;
blood
;
Liver
;
enzymology
;
pathology
;
Male
;
Molecular Structure
;
Protective Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Solubility
;
Triglycerides
;
blood