1.Cloning of adipor1 and adipor2 genes in Rana dybowskii and its expression pattern upon infection.
Dongmei XU ; Yiming LIU ; Yugang SUN ; Yufen LIU ; Peng LIU ; Wenge ZHAO
Chinese Journal of Biotechnology 2023;39(4):1731-1746
Adiponectin receptor 1 (AdipoR1) and Adiponectin receptor 2 (AdipoR2) can bind to adiponectin (AdipoQ) secreted by adipose tissue to participate in various physiological functions of the body. In order to explore the role of AdipoR1 and AdipoR2 in amphibians infected by Aeromonas hydrophila (Ah), the genes adipor1 and adipor2 of Rana dybowskii were cloned by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed by bioinformatics. The tissue expression difference of adipor1 and adipor2 was analyzed by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR), and an inflammatory model of R. dybowskii infected by Ah was constructed. The histopathological changes were observed by hematoxylin-eosin staining (HE staining); the expression profiles of adipor1 and adipor2 after infection were dynamically detected by qRT-PCR and Western blotting. The results show that AdipoR1 and AdipoR2 are cell membrane proteins with seven transmembrane domains. Phylogenetic tree also shows that AdipoR1 and AdipoR2 cluster with the amphibians in the same branch. qRT-PCR and Western blotting results show that adipor1 and adipor2 were up-regulated at different levels of transcription and translation upon Ah infection, but the response time and level were different. It is speculated that AdipoR1 and AdipoR2 participate in the process of bacterial immune response, providing a basis for further exploring the biological functions of AdipoR1 and AdipoR2 in amphibians.
Animals
;
Receptors, Adiponectin/metabolism*
;
Phylogeny
;
Adiponectin/metabolism*
;
Cloning, Molecular
;
Ranidae/genetics*
4.Advances in researches on single-nucleotide polymorphisms of candidate genes for type 2 diabetes.
Acta Academiae Medicinae Sinicae 2006;28(2):294-297
Type 2 diabetes is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. With the accomplishment of Human Genome Project and the development of the screening technology for single-nucleotide polymorphisms (SNP), many SNP researches have been carried out to determine the genetic factors involved in type 2 diabetes. This article introduces the strategies of SNP studies and reviews the SNP studies of major candidate genes for type 2 diabetes.
Adiponectin
;
genetics
;
Diabetes Mellitus, Type 2
;
genetics
;
Genetic Predisposition to Disease
;
genetics
;
Humans
;
PPAR gamma
;
genetics
;
Polymorphism, Single Nucleotide
6.Adiponectin Ameliorated Pancreatic Islet Injury Induced by Chronic Intermittent Hypoxia through Inhibiting the Imbalance in Mitochondrial Fusion and Division.
Can HE ; Xi-Long ZHANG ; Qiang ZHANG ; Lu-Yao GE ; Wen-Xiao DING
Chinese Medical Sciences Journal 2021;36(3):225-233
Objective This study aimed to assess the protective value of adiponectin (APN) in pancreatic islet injury induced by chronic intermittent hypoxia (CIH). Methods Sixty rats were randomly divided into three groups: normal control (NC) group, CIH group, and CIH with APN supplement (CIH+APN) group. After 5 weeks of CIH exposure, we conducted oral glucose tolerance tests (OGTT) and insulin released test (IRT), examined and compared the adenosine triphosphate (ATP) levels, mitochondrial membrane potential (MMP) levels, reactive oxygen species (ROS) levels, enzymes gene expression levels of
Adiponectin/genetics*
;
Animals
;
Hypoxia
;
Islets of Langerhans
;
Mitochondrial Dynamics
;
Rats
;
Rats, Wistar
7.Changes in the mRNA expression of adiponectin, adiponectin receptors, and leptin in adipose tissue of Wannanhua pigs at different stages of development.
Sheng SHENG ; Jie ZHOU ; Jia ZHANG ; Kang SHAO ; Xiao-Xue WU ; Wei-Xin LI ; Zong-Jun YIN
Chinese Journal of Applied Physiology 2012;28(4):352-355
OBJECTIVETo explore the changes in the mRNA expression of adiponectin (Adp), adiponectin receptors(AdpR), and leptin in different adipose tissues of Wannanhua pigs at different stages of development, and their sexual dimorphism.
METHODSFive Wannanhua boars and five Wannanhua gilts were sampled at birth, 30, 45, 90, and 180 days of age respectively. The delta delta Ct relative quantification real-time PCR was used to detect the transcription levels of Adp, AdpR1, AdpR2, and leptin mRNAs in subcutaneous (SC) and perirenal (PR) adipose tissues, and beta-actin were used as internal standards.
RESULTSThe expression level of Adp, AdpR1, AdpR2, and leptin mRNA in SC and PR adipose tissue were changed with age significantly (P < 0.01). In general, Adp mRNA expression in SC adipose tissue was significantly lower than that in PR adipose tissue (P < 0.05), while AdpR1, AdpR2, and leptin mRNA expression in SC adipose tissue were significantly higher than those in PR adipose tissue (P < 0.05 or P < 0.01). Although the sexual dimorphism were found in apart genes or apart days of age, Adp, AdpR1, AdpR2, and leptin mRNA expression both in SC adipose tissue and PR adipose tissue had no significant differences between Wannanhua gilts and boars in general. Significant positive correlation was found between Adp and AdpR1, AdpR2 (P < 0.05 or P < 0.01), and significant negative correlation was found between Adp and leptin (P < 0.05) in SC adipose tissue and PR adipose tissue respectively (P < 0.05).
CONCLUSIONThe expression of Adp, AdpR1, AdpR2, and leptin mRNA in adipose tissue of Wannanhua pigs followed specific developmental patterns and tissue specificity. Adp correlated with its receptors.
Actins ; metabolism ; Adiponectin ; metabolism ; Adipose Tissue ; growth & development ; metabolism ; Animals ; Female ; Leptin ; metabolism ; Male ; RNA, Messenger ; genetics ; Receptors, Adiponectin ; metabolism ; Swine
8.Effect of adiponectin on human osteoblast differentiation.
Li-juan GUO ; Hui XIE ; Er-yuan LIAO
Journal of Central South University(Medical Sciences) 2008;33(8):731-736
OBJECTIVE:
To investigate the effect of adiponectin on the osteoblast differentiation and its signal transduction.
METHODS:
Adipopnectin receptor (AdipoR) was detected by immunoblot analysis. Alkaline phosphatase (ALP) activity was measured by enzyme-linked immunosorbent assay. Osteocalcin was measured by a specific radioimmunoassay kit, and the extent of mineralized matrix was determined. RNA interference was used to down-regulate the expression of AdipoR1 in human osteoblasts, and the effect of adiponectin on osteoblast differentiation was investigated.
RESULTS:
Only AdipoR1 protein was detected in human osteoblasts. Adiponectin could promote osteoblast differentiation, and result in a dose-dependent increase in ALP activity, osteocalcin secretion, and an increase in mineralized nodules. Suppression of AdipoR1 with siRNA could abolish the adiponectin induced ALP expression. Adiponectin could induce the activation of p38 and JNK, but not ERK1/2 in osteoblasts, and the pretreatment of osteoblasts with the p38 inhibitor (SB203580) could block the adiponectin-induced ALP activity.
CONCLUSION
Adiponectin can induce human osteoblast differentiation via AdipoR1/p38 pathway.
Adiponectin
;
pharmacology
;
Alkaline Phosphatase
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Humans
;
Osteoblasts
;
cytology
;
metabolism
;
Osteocalcin
;
analysis
;
RNA, Small Interfering
;
genetics
;
Receptors, Adiponectin
;
biosynthesis
;
Signal Transduction
9.Relationship between visceral fat depot and adiponectin mRNA level in the adipose tissue of OLETF rats.
Bo ZHU ; Chen-zhong LI ; Yi QIAN ; Yong-hua PAN ; Yan ZHANG ; Yao-ming XUE
Journal of Southern Medical University 2011;31(8):1341-1344
OBJECTIVETo investigate the relationship between visceral fat depot and adiponectin level in OLETF rats.
METHODSTwenty male OLETF rats and 10 male Long-Evans Tokushima Otsuka (LETO) rats were subjected to regular oral glucose tolerance test (OGTT). The rats were sacrificed at the ages of 8, 32 and 40 weeks for measurements of the body weight, blood glucose, blood lipid level, blood insulin, and weight of the visceral fat.
RESULTSCompared with LETO rats, OLETF rats had significantly higher body weight and visceral fat with impaired glucose tolerance (P<0.05). OLETF rats also had higher blood insulin, TG, FFA and CHOL levels (P<0.05). The plasma adiponectin level was significantly lower in OLETF rats than in LETO rats at different ages (P<0.05). The adiponectin mRNA level in the adipose tissue of OLETF rats was comparable with that in LETO rats, but significantly decreased at 32 and 40 weeks of age (P<0.01).
CONCLUSIONPlasma adiponectin level is significantly correlated to insulin sensitivity and visceral fat depots in OLETF rats, but a lowered APN mRNA expression level is not the main reason for a decreased plasma adiponectin level in the early stage.
Adiponectin ; blood ; genetics ; metabolism ; Animals ; Insulin Resistance ; Intra-Abdominal Fat ; metabolism ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Inbred OLETF
10.Association of the ADIPOQ Rs2241766 and Rs266729 Polymorphisms with Metabolic Syndrome in the Chinese Population: A Meta-analysis.
Jun Mei ZHOU ; Ming ZHANG ; Shu WANG ; Bing Yuan WANG ; Cheng Yi HAN ; Yong Cheng REN ; Lu ZHANG ; Hong Yan ZHANG ; Xiang Yu YANG ; Yang ZHAO ; Dong Sheng HU
Biomedical and Environmental Sciences 2016;29(7):505-515
OBJECTIVEThis meta-analysis was performed to summarize the association of the ADIPOQ rs2241766 and rs266729 polymorphisms with metabolic syndrome (MS) in the Chinese population.
METHODSWe searched for articles in MEDLINE via PubMed, EMBASE, HuGE Navigator, CNKI, and Wanfang databases and calculated odds ratios (ORs) with 95% confidence intervals (CIs) to determine the strength of associations in fixed- or random-effects models.
RESULTSWe included 21 articles in the meta-analysis: 17 reports of ADIPOQ rs2241766 with 3628 cases and 3000 controls and 8 of rs266729 with 2021 cases and 2226 controls. We found an increased risk of MS with the ADIPOQ rs2241766 polymorphism in some genetic models (allele model: OR=1.12, 95% CI: 1.03-1.21; dominant model: OR=1.15, 95% CI: 1.04-1.28; homozygote model: OR=1.22, 95% CI: 1.00-1.49) but no association with the ADIPOQ rs266729 polymorphism (allele model: OR=0.98, 95% CI: 0.82-1.17; dominant model: OR=0.90, 95% CI: 0.79-1.02; recessive model: OR=1.09, 95% CI: 0.85-1.39; homozygote model: OR=1.03, 95% CI: 0.80-1.33).
CONCLUSIONThe results of this meta-analysis suggest an association between the ADIPOQ rs2241766 polymorphism and MS in the Chinese population. G allele of ADIPOQ rs2241766 increases the risk of MS. Better designed studies with different ethnic populations and larger sample sizes are needed for assessing the relationship between ADIPOQ rs2241766 and rs266729 polymorphisms and MS in the future.
Adiponectin ; genetics ; metabolism ; China ; epidemiology ; Genetic Predisposition to Disease ; Genotype ; Humans ; Metabolic Syndrome ; epidemiology ; genetics ; Polymorphism, Genetic ; Risk Factors