1.Association of Adiponectin 45T/G Polymorphism with Diabetic Cardiovascular Complications in Korean Type 2 Diabetes.
Myeong Jin JI ; Eu Jeong KU ; Tae Keun OH ; Hyun Jeong JEON
Journal of Korean Medical Science 2018;33(17):e124-
BACKGROUND: Adiponectin is an adipokine that regulates lipid and glucose metabolism and has been shown to have anti-inflammatory and anti-atherogenic effects. It also plays an important role in the development of cardiovascular disease (CVD). METHODS: This study evaluated the association between adiponectin 45T/G polymorphism and cardiovascular complication in type 2 diabetes in Koreans. RESULTS: The present study included 758 patients with type 2 diabetes. The distribution of the adiponectin 45T/G polymorphism was 3.56% (n = 27) for GG, 42.35% (n = 321) for TG, and 54.09% (n = 410) for TT in patients with type 2 diabetes. The prevalence of CVD was significantly higher in subjects with the GG + TG genotype compared to those with the TT genotype (17.5% vs. 9.8%, P = 0.002). The G allele was associated with a higher risk of CVD (P = 0.002). CONCLUSION: Our findings suggest that the adiponectin 45T/G polymorphism is associated with diabetic cardiovascular complication in type 2 diabetes.
Adipokines
;
Adiponectin*
;
Alleles
;
Cardiovascular Diseases
;
Genotype
;
Glucose
;
Humans
;
Metabolism
;
Prevalence
2.Expression of adipokines in children with primary nephrotic syndrome and its association with hyperlipidemia.
Ru-Xin ZHANG ; Xuan ZHANG ; Bi-Li ZHANG ; Zhu-Feng LIU ; Shu-Xiang LIN
Chinese Journal of Contemporary Pediatrics 2021;23(8):828-834
OBJECTIVES:
To study the expression of adipokines in children with primary nephrotic syndrome (PNS) before and after treatment and its correlation with blood lipids, as well as the role of adipokines in PNS children with hyperlipidemia.
METHODS:
A total of 90 children who were diagnosed with incipient PNS or recurrence of PNS after corticosteroid withdrawal for more than 6 months were enrolled as subjects. Thirty children who underwent physical examination were enrolled as the control group. Venous blood samples were collected from the children in the control group and the children with PNS before corticosteroid therapy (active stage) and after urinary protein clearance following 4 weeks of corticosteroid therapy (remission stage). ELISA was used to measure the levels of adipokines. An automatic biochemical analyzer was used to measure blood lipid levels.
RESULTS:
Compared with the control group, the children with PNS had a significantly lower level of omentin-1 in both active and remission stages, and their level of omentin-1 in the active stage was significantly lower than that in the remission stage (
CONCLUSIONS
Omentin-1 may be associated with disease activity, dyslipidemia, and proteinuria in children with PNS. Blood lipid ratios may be more effective than traditional blood lipid parameters in monitoring early cardiovascular risk in children with PNS.
Adipokines
;
Chemokines
;
Child
;
Cytokines/metabolism*
;
GPI-Linked Proteins/metabolism*
;
Humans
;
Hyperlipidemias
;
Lectins/metabolism*
;
Lipids
;
Nephrotic Syndrome/drug therapy*
;
Proteinuria
3.Recent advances of miRNAs in adipose tissues.
Yuntao GUO ; Xiuxiu ZHANG ; Wanlong HUANG ; Xiangyang MIAO
Chinese Journal of Biotechnology 2016;32(2):151-163
microRNAs (miRNAs), a class of endogenous non-coding RNA about 22 nucleotide long, regulate gene expression at the post-transcription level by inhibiting the translation or inducing the degradation of their target mRNAs in organisms. A lot of studies reveal that miRNAs in adipose tissues are involved in adipocyte differentiation and lipid metabolism and modulated by multiple transcription factors, adipocytokines and environmental factors, which form a complex regulatory network maintaining the homeostasis of adipose tissues. The discovery of circulating miRNAs adds new elements to the regulatory network. To study the metabolic diseases such as obesity, we should keep a new insight into the complex dynamic network. In this review, we summarize the latest studies of miRNAs in adipose tissues, which might provide new strategies for the treatment of obesity and other related diseases.
Adipokines
;
metabolism
;
Adipose Tissue
;
metabolism
;
Cell Differentiation
;
Gene Expression Regulation
;
Humans
;
Lipid Metabolism
;
MicroRNAs
;
metabolism
;
Obesity
;
metabolism
;
RNA, Messenger
;
Transcription Factors
;
metabolism
4.Obesity and Gastrointestinal Cancer-related Factor.
The Korean Journal of Gastroenterology 2012;59(1):8-15
Despite a higher incidence and less favorable outcome of malignant tumors in obese patients, much less recognized is the link between obesity and cancer. The mechanism of the association of obesity with carcinogenesis remains incompletely understood. Postulated mechanisms include insulin resistance, insulin-like growth factor signaling, chronic inflammation, immunomodulation, hyperglycemia-induced oxidative stress, and changes of intestinal microbiome. Insulin resistance leads to direct mitogenic and antiapoptotic signaling by insulin and the insulin-like growth factor axis. Obesity can be considered to be a state of chronic low-grade inflammation. In obesity, numerous proinflammatory cytokines are released from adipose tissue which may involve in carcinogenesis. Hyperglycemia in susceptible cells results in the overproduction of superoxide and this process is the key to initiating all damaging pathways related to diabetes. This hyperglycemia-induced oxidative stress could be one possible link among obesity, diabetes, and cancer development. The role of obesity-related changes in the intestinal microbiome in gastrointestinal carcinogenesis deserves further attention.
Adipokines/metabolism/physiology
;
Gastrointestinal Neoplasms/*etiology/microbiology
;
Humans
;
Inflammation/etiology
;
Insulin/metabolism/physiology
;
Leptin/metabolism/physiology
;
Obesity/*complications/immunology/metabolism
;
Oxidative Stress
;
Somatomedins/metabolism/physiology
5.Advances in the Relationship between Adipokines and β-cell Failure in Type 2 Diabetes Mellitus.
Acta Academiae Medicinae Sinicae 2016;38(5):601-606
β-cell failure coupled with insulin resistance plays a key role in the development of type 2 diabetes mellitus (T2DM). Changed adipokines in circulating level form a remarkable link between obesity and both β-cell failure and insulin resistance. Some adipokines have beneficial effects,whereas others have detrimental properties. The overall contribution of adipokines to β-cell failure mainly depends on the interactions among adipokines. This article reviews the role of individual adipokines such as leptin,adiponectin,and resistin in the function,proliferation,death,and failure of β-cells. Future studies focusing on the combined effects of adipokines on β-cells failure may provide new insights in the treatment of T2DM.
Adipokines
;
metabolism
;
Adiponectin
;
metabolism
;
Diabetes Mellitus, Type 2
;
physiopathology
;
Humans
;
Insulin Resistance
;
Insulin-Secreting Cells
;
pathology
;
Leptin
;
metabolism
;
Obesity
;
Resistin
;
metabolism
6.Adipocyte Signals in Energy Balance and Digestive Diseases.
Hoon Jai CHUN ; Bora KEUM ; Chang Sub UHM
The Korean Journal of Gastroenterology 2006;48(2):67-74
For the regulation of energy balance in various internal organs including gut, pancreas and liver, visceral adipose tissue and brain perform important sensing and signaling roles via neural and endocrine pathway. Among these, adipose tissue has been known as a simple energy-storing organ, which stores excess energy in triglyceride. However, it became apparent that adipocytes have various receptors related to energy homeostasis, and secrete adipocytokines by endocrine, paracrine and autocrine mechanisms. In this review, basic roles of adipocytes in energy homeostasis and the correlation between adipocyte signals and digestive diseases are discussed.
Adipocytes/*metabolism
;
Adipokines/*physiology
;
Adiponectin/physiology
;
Digestive System Diseases/*metabolism
;
*Energy Metabolism
;
Homeostasis
;
Humans
;
Leptin/physiology
;
Peroxisome Proliferator-Activated Receptors/physiology
;
Resistin/physiology
;
Signal Transduction
7.Obesity and Colorectal Cancer.
Soo Young NA ; Seung Jae MYUNG
The Korean Journal of Gastroenterology 2012;59(1):16-26
Obesity worldwide is constantly increasing. Obesity acts as an independent significant risk factor for malignant tumors of various organs including colorectal cancer. Visceral adipose tissue is physiologically more important than subcutaneous adipose tissue. The relative risk of colorectal cancer of obese patients is about 1.5 times higher than the normal-weight individuals, and obesity is also associated with premalignant colorectal adenoma. The colorectal cancer incidence of obese patients has gender-specific and site-specific characteristics that it is higher in men than women and in the colon than rectum. Obesity acts as a risk factor of colorectal carcinogenesis by several mechanisms. Isulin, insulin-like growth factor, leptin, adiponectin, microbiome, and cytokines of chronic inflammation etc. have been understood as its potential mechanisms. In addition, obesity in patients with colorectal cancer negatively affects the disease progression and response of chemotherapy. Although the evidence is not clear yet, there are some reports that weight loss as well as life-modification such as dietary change and physical activity can reduce the risk of colorectal cancer. It is very important knowledge in the point that obesity is a potentially modifiable risk factor that can alter the incidence and outcome of the colorectal cancer.
Adipokines/metabolism/physiology
;
Body Mass Index
;
Colorectal Neoplasms/*etiology/prevention & control
;
Energy Intake
;
Exercise
;
Humans
;
Insulin Resistance
;
Meta-Analysis as Topic
;
Obesity/*complications
;
Somatomedins/metabolism/physiology
;
Weight Loss
8.The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis.
Endocrinology and Metabolism 2016;31(1):1-6
Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.
Adipokines
;
Adipose Tissue
;
Aging
;
Appetite
;
Atherosclerosis*
;
Cardiovascular Diseases
;
Energy Intake
;
Energy Metabolism
;
Glucose
;
Inflammation*
;
Insulin Resistance*
;
Insulin*
;
Lipid Metabolism
;
Liver
;
Muscle, Skeletal
;
Obesity
;
Prevalence
;
Sarcopenia
;
Sedentary Lifestyle
;
Biomarkers
9.Recent Advances in Regulating Energy Homeostasis and Obesity.
Korean Journal of Pediatrics 2005;48(2):126-137
New insights in the complex metabolic pathways and its control mechanism for energy homeostasis have refined our understanding of the pathophysiology of obesity. It is now recognized that there are several additional regulatory mechanism such as peripheral signals including leptin, ghrelin, GLP-1 and PYY and cellular signals including uncoupling proteins and beta Adrenergic receptors, which contribute to the regulation of food intake and energy expenditure, respectively. In addition, the function of adipocyte as an endocrine organ in energy homeostasis has been recently emphasized. Recent findings suggest that elevated levels of adipokines, such as leptin, adiponectin, resistin and TNF-alpha, in addition to increased free fatty acid level could be related to the pathophysiology of insulin resistance in obesity. For effective treatments and prevention of obesity, further studies on the circuits of neural and endocrine interactions in the regulation of energy homeostasis are needed.
Adipocytes
;
Adipokines
;
Adiponectin
;
Eating
;
Energy Metabolism
;
Ghrelin
;
Glucagon-Like Peptide 1
;
Homeostasis*
;
Insulin Resistance
;
Leptin
;
Metabolic Networks and Pathways
;
Obesity*
;
Receptors, Adrenergic, beta
;
Resistin
;
Tumor Necrosis Factor-alpha
10.Serum Concentrations of Ghrelin and Leptin according to Thyroid Hormone Condition, and Their Correlations with Insulin Resistance.
Kyu Jin KIM ; Bo Yeon KIM ; Ji Oh MOK ; Chul Hee KIM ; Sung Koo KANG ; Chan Hee JUNG
Endocrinology and Metabolism 2015;30(3):318-325
BACKGROUND: Thyroid hormones can influence energy metabolism and insulin sensitivity via their interaction with adipocytokines and gut hormones. The aims of this study were to evaluate differences in serum ghrelin and leptin concentrations according to thyroid hormone levels, and to investigate the correlation of insulin resistance. METHODS: A total of 154 patients (57 hyperthyroid patients, 61 euthyroid patients, and 36 hypothyroid patients; mean age, 47.9 years) were enrolled. Serum leptin, ghrelin, and insulin levels were measured and insulin resistance was calculated using the formula of the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS: There were no differences in mean concentrations of ghrelin or leptin among the three groups. There were no significant differences in insulin levels between the groups (P=0.06), although hyperthyroid patients had borderline statistically significantly higher levels of insulin than did euthyroid subjects by post hoc test (26.4 microIU/mL vs. 16.1 microIU/mL, P=0.057). Regarding HOMA-IR index, the mean levels were highest in the hyperthyroid group among those of the three groups (hyperthyroid vs. euthyroid vs. hypothyroid, 6.7 vs. 3.8 vs. 4.4, P=0.068). Plasma levels of ghrelin were significantly negatively correlated with age, insulin, glucose, body mass index (BMI), and HOMA-IR. Plasma levels of leptin showed significant positive correlation with BMI and triglyceride. There were no significant correlations among thyroid hormone, thyrotropin, ghrelin, leptin, or insulin. CONCLUSION: The present study found that serum ghrelin, leptin, and insulin levels didn't differ according to thyroid function conditions. Further studies with larger numbers of patients are required to establish a direct relationship between plasma ghrelin, leptin, and thyroid hormone.
Adipokines
;
Body Mass Index
;
Energy Metabolism
;
Ghrelin*
;
Glucose
;
Homeostasis
;
Humans
;
Insulin Resistance*
;
Insulin*
;
Leptin*
;
Plasma
;
Thyroid Gland*
;
Thyroid Hormones
;
Thyrotropin
;
Triglycerides