1.Obesity and Gastrointestinal Cancer-related Factor.
The Korean Journal of Gastroenterology 2012;59(1):8-15
Despite a higher incidence and less favorable outcome of malignant tumors in obese patients, much less recognized is the link between obesity and cancer. The mechanism of the association of obesity with carcinogenesis remains incompletely understood. Postulated mechanisms include insulin resistance, insulin-like growth factor signaling, chronic inflammation, immunomodulation, hyperglycemia-induced oxidative stress, and changes of intestinal microbiome. Insulin resistance leads to direct mitogenic and antiapoptotic signaling by insulin and the insulin-like growth factor axis. Obesity can be considered to be a state of chronic low-grade inflammation. In obesity, numerous proinflammatory cytokines are released from adipose tissue which may involve in carcinogenesis. Hyperglycemia in susceptible cells results in the overproduction of superoxide and this process is the key to initiating all damaging pathways related to diabetes. This hyperglycemia-induced oxidative stress could be one possible link among obesity, diabetes, and cancer development. The role of obesity-related changes in the intestinal microbiome in gastrointestinal carcinogenesis deserves further attention.
Adipokines/metabolism/physiology
;
Gastrointestinal Neoplasms/*etiology/microbiology
;
Humans
;
Inflammation/etiology
;
Insulin/metabolism/physiology
;
Leptin/metabolism/physiology
;
Obesity/*complications/immunology/metabolism
;
Oxidative Stress
;
Somatomedins/metabolism/physiology
2.Obesity aggravates the joint inflammation in a collagen-induced arthritis model through deviation to Th17 differentiation.
Joo Yeon JHUN ; Bo Young YOON ; Mi Kyung PARK ; Hye Joa OH ; Jae Kyeong BYUN ; Seon Young LEE ; Jun Ki MIN ; Sung Hwan PARK ; Ho Youn KIM ; Mi La CHO
Experimental & Molecular Medicine 2012;44(7):424-431
White fat cells secrete adipokines that induce inflammation and obesity has been reported to be characterized by high serum levels of inflammatory cytokines such as IL-6 and TNF-alpha. Rheumatoid arthritis (RA) is a prototype of inflammatory arthritis, but the relationship between RA and obesity is controversial. We made an obese inflammatory arthritis model: obese collagen-induced arthritis (CIA). C57BL/6 mice were fed a 60-kcal high fat diet (HFD) from the age of 4 weeks and they were immunized twice with type II collagen (CII). After immunization, the obese CIA mice showed higher arthritis index scores and histology scores and a more increased incidence of developing arthritis than did the lean CIA mice. After treatment with CII, mixed lymphocyte reaction also showed CII-specific response more intensely in the obese CIA mice than lean CIA. The anti-CII IgG and anti-CII IgG2a levels in the sera of the obese CIA mice were higher than those of the lean CIA mice. The number of Th17 cells was higher and the IL-17 mRNA expression of the splenocytes in the obese CIA mice was higher than that of the lean CIA mice. Obese CIA mice also showed high IL-17 expression on synovium in immunohistochemistry. Although obesity may not play a pathogenic role in initiating arthritis, it could play an important role in amplifying the inflammation of arthritis through the Th1/Th17 response. The obese CIA murine model will be an important tool when we investigate the effect of several therapeutic target molecules to treat RA.
Adipokines/immunology/metabolism
;
Animals
;
*Arthritis, Experimental/genetics/immunology/pathology
;
Cell Differentiation/genetics/immunology
;
*Collagen Type II/administration & dosage/immunology
;
Disease Models, Animal
;
Gene Expression
;
Humans
;
Inflammation/chemically induced/*immunology
;
Interleukin-17/metabolism
;
Interleukin-6/blood
;
Joints/immunology/pathology
;
Mice
;
Mice, Inbred C57BL
;
*Obesity/genetics/immunology/pathology
;
*Th17 Cells/immunology/metabolism
;
Tumor Necrosis Factor-alpha/blood
3.Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.
Chao-Qiang YANG ; Jing-Hua XU ; Dan-Dan YAN ; Bao-Lin LIU ; Kang LIU ; Fang HUANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(9):664-673
Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia.
3T3-L1 Cells
;
Adipocytes
;
drug effects
;
immunology
;
Adipokines
;
genetics
;
immunology
;
Animals
;
Cell Hypoxia
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
immunology
;
Insulin
;
metabolism
;
Insulin Resistance
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
Oxygen
;
metabolism
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
Xanthones
;
pharmacology