1.Brown Adipocyte and Splenocyte Co-Culture Maintains Regulatory T Cell Subset in Intermittent Hypobaric Conditions
Tae Heung KANG ; Jung Hwa PARK ; Donghyeok SHIN ; Hyungon CHOI ; Jeenam KIM ; Myung Chul LEE
Tissue Engineering and Regenerative Medicine 2019;16(5):539-548
BACKGROUND: Brown adipocytes have thermogenic characteristics in neonates and elicit anti-inflammatory responses. We postulated that thermogenic brown adipocytes produce distinctive intercellular effects in a hypobaric state. The purpose of this study is to analyze the correlation between brown adipocyte and regulatory T cell (T(reg)) expression under intermittent hypobaric conditions. METHODS: Brown and white adipocytes were harvested from the interscapular and flank areas of C57BL6 mice, respectively. Adipocytes were cultured with syngeneic splenocytes after isolation and differentiation. Intermittent hypobaric conditions were generated using cyclic negative pressure application for 48 h in both groups of adipocytes. Expression levels of T(regs) (CD4 + CD25 + Foxp3 + T cells), cytokines [tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), and the programmed death-ligand 1 (PD-L1)] co-inhibitory ligand were examined. RESULTS: Splenocytes, cultured with brown and white adipocytes, exhibited comparable T(reg) expression in a normobaric state. Under hypobaric conditions, brown adipocytes maintained a subset of T(regs). However, a decrease in T(regs) was found in the white adipocyte group. TNF-α levels increased in both groups under hypobaric conditions. In the brown adipocyte group, anti-inflammatory IL-10 expression increased significantly; meanwhile, IL-10 expression decreased in the white adipocyte group. PD-L1 levels increased more significantly in brown adipocytes than in white adipocytes under hypobaric conditions. CONCLUSION: Both brown and white adipocytes support T(reg) expression when they are cultured with splenocytes. Of note, brown adipocytes maintained T(reg) expression in intermittent hypobaric conditions. Anti-inflammatory cytokines and co-inhibitory ligands mediate the immunomodulatory effects of brown adipocytes under altered atmospheric conditions. Brown adipocytes showed the feasibility as a source of adjustment in physical stresses.
Adipocytes
;
Adipocytes, Brown
;
Adipocytes, White
;
Animals
;
Coculture Techniques
;
Cytokines
;
Humans
;
Infant, Newborn
;
Interleukin-10
;
Ligands
;
Mice
;
Necrosis
4.Food Intake and Thermogenesis in Adipose Tissue
Tsuyoshi GOTO ; Minji KIM ; Haruya TAKAHASHI ; Nobuyuki TAKAHASHI ; Teruo KAWADA
Korean Journal of Obesity 2016;25(3):109-114
Brown adipose tissue (BAT) is regarded as a key target for developing interventions to prevent and treat obesity and age-related diseases. In addition, uncoupling pro tein 1 (UCP1)
Adipocytes
;
Adipose Tissue
;
Adipose Tissue, Brown
;
Adipose Tissue, White
;
Atrophy
;
Eating
;
Humans
;
Middle Aged
;
Obesity
;
Thermogenesis
5.The dark side of browning.
Kirstin A TAMUCCI ; Maria NAMWANJE ; Lihong FAN ; Li QIANG
Protein & Cell 2018;9(2):152-163
The induction of brown-like adipocyte development in white adipose tissue (WAT) confers numerous metabolic benefits by decreasing adiposity and increasing energy expenditure. Therefore, WAT browning has gained considerable attention for its potential to reverse obesity and its associated co-morbidities. However, this perspective has been tainted by recent studies identifying the detrimental effects of inducing WAT browning. This review aims to highlight the adverse outcomes of both overactive and underactive browning activity, the harmful side effects of browning agents, as well as the molecular brake-switch system that has been proposed to regulate this process. Developing novel strategies that both sustain the metabolic improvements of WAT browning and attenuate the related adverse side effects is therefore essential for unlocking the therapeutic potential of browning agents in the treatment of metabolic diseases.
Adipocytes, Beige
;
cytology
;
Adipose Tissue, Brown
;
cytology
;
metabolism
;
Adipose Tissue, White
;
cytology
;
Aging
;
metabolism
;
Animals
;
Humans
6.Two Cases of Idiopathic Localized Involutional Lipoatrophy.
Young Bok LEE ; Jung Eun KIM ; Hyun Jeong PARK ; Baik Kee CHO
Annals of Dermatology 2010;22(3):346-348
Localized involutional lipoatrophy (LIL) is a rare distinctive idiopathic form of localized lipoatrophy. The characteristic features in histopathology of LIL are diminutive fat lobules composed of small adipocyte resembling fetal fat tissue. LIL is not a well-known disorder, there have been only a few reports on LIL in the English literature. We herein report 2 cases of LIL and review the previously published cases.
Adipocytes
7.Histologic Change of Injected Fat Cell Taken by Different Technique.
Soon Jae YANG ; Nam Seok PARK ; Sang Gyu KANG ; Se Yeong KIM
Journal of the Korean Society of Aesthetic Plastic Surgery 2001;7(1):16-21
No abstract available.
Adipocytes*
8.Eosinophils and Type 2 Cytokine Signaling in Macrophages Support the Biogenesis of Cold-induced Beige Fat.
Journal of Bacteriology and Virology 2016;46(1):44-46
Brown adipose generates heat via oxidation of fatty acids by a mitochondrial uncoupling protein 1 (UCP1)-dependent process. In addition, a subpopulation of cells within subcutaneous white adipose tissue, known as beige adipocytes, also plays a role in thermogenesis. The biogenesis of beige adipocytes is induced by thermogenic signals, such as chronic cold exposure. Recently, it has been reported that eosinophils, type 2 cytokines of IL-4/13, and alternatively activated macrophages control the thermogenic cycle of beige adipocytes. Alternatively, activated macrophages induce UCP1+ beige adipocytes through secretion of catecholamines. These results define the role of type 2 immune responses in the regulation of energy homeostasis.
Adipocytes
;
Adipose Tissue, Brown
;
Adipose Tissue, White
;
Organelle Biogenesis*
;
Catecholamines
;
Cytokines
;
Eosinophils*
;
Fatty Acids
;
Homeostasis
;
Hot Temperature
;
Macrophages*
;
Thermogenesis
9.Time-sequential expression of lnc AK079912 during adipose tissue development and browning in mice.
Jiaqi HUANG ; Ru JIA ; Xiaojing WEI ; Xiao LUO
Journal of Southern Medical University 2019;39(12):1494-1499
OBJECTIVE:
To investigate the time-sequential expression of a novel long non-coding RNA, lnc AK079912, in metabolically related tissues and during adipose tissue development and browning in mice.
METHODS:
The interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), epididymal white adipose tissue (eWAT), liver tissues and muscular tissues were collected from 8-week-old C57BL/6J mice. The iBAT, sWAT and eWAT were also collected from the mice during development (0 day, 21 days, 8 weeks and 6 months after birth) and from 8- to 10-week- mice with cold exposure (4 ℃) and intraperitoneal injections of CL316, 243 (1 μg/g body weight) for 1 to 5 days. Trizol was used to extract the total RNA from the tissues, and RT-qPCR was performed to detect the expressions of lnc AK079912. Isolated mouse preadipocytes in primary culture were induced for adipogenic differentiation for 9 days and then treated with CL316, 243 (2 μmol/L) for different durations (no longer than 24 h); the expression of lnc AK079912 in the cells was detected using RT-qPCR at different time points of the treatment.
RESULTS:
Lnc AK079912 was highly expressed in mouse adipose tissues, the highest in iBAT, followed by the muscular tissue, but was hardly detected in the liver tissue. The expression level of lnc AK079912 increased progressively in iBAT and sWAT during development of the mice, while its expression in eWAT showed an initial increase followed by a reduction at 8 weeks ( < 0.001). No significant difference was found in the expression of lnc AK079912 in the iBAT, sWAT or eWAT in mice with cold stimulation for 1 to 5 days ( > 0.05). The expression of lnc AK079912 was significantly decreased in iBAT and eWAT ( < 0.05) but increased in eWAT from mice with intraperitoneal injection of CL316, 243 for 1 to 5 days ( < 0.05). The expression level in the adipocytes in primary culture was significantly increased in response to treatment with CL316, 243 ( < 0.05).
CONCLUSIONS
Lnc AK079912 is highly expressed in mouse adipose tissue, and its expression gradually increases with the development of adipose tissue but with a depot-specific difference. Lnc AK079912 is significantly elevated in the early stage of adipose tissue browning, indicating its important role in the development and browning of adipose tissue.
Adipocytes
;
Adipogenesis
;
Adipose Tissue, Brown
;
Adipose Tissue, White
;
Animals
;
Male
;
Mice
;
Mice, Inbred C57BL
;
RNA, Long Noncoding
10.The Mechanism of White and Brown Adipocyte Differentiation.
Diabetes & Metabolism Journal 2013;37(2):85-90
Obesity gives vent to many diseases such as type 2 diabetes, hypertension, and hyperlipidemia, being considered as the main causes of mortality and morbidity worldwide. The pathogenesis and pathophysiology of metabolic syndrome can well be understood by studying the molecular mechanisms that control the development and function of adipose tissue. In human body, exist two types of adipose tissue, the white and the brown one, which are reported to play various roles in energy homeostasis. The major and most efficient storage of energy occurs in the form of triglycerides in white adipose tissue while brown adipose tissue actively participates in both basal and inducible energy consumption in the form of thermogenesis. Recent years have observed a rapid and greater interest towards developmental plasticity and therapeutic potential of stromal cells those isolated from adipose tissue. The adipocyte differentiation involves a couple of regulators in the white or brown adipogenesis. Peroxisome proliferators-activated receptor-gamma actively participates in regulating carbohydrate and lipid metabolism, and also acts as main regulator of both white and brown adipogenesis. This review based on our recent research, seeks to highlight the adipocyte differentiation.
Adipocytes
;
Adipocytes, Brown
;
Adipogenesis
;
Adipose Tissue
;
Adipose Tissue, Brown
;
Adipose Tissue, White
;
DNA-Directed DNA Polymerase
;
Genes, Homeobox
;
Homeostasis
;
Human Body
;
Humans
;
Hyperlipidemias
;
Hypertension
;
Lipid Metabolism
;
Obesity
;
Peroxisomes
;
Stromal Cells
;
Thermogenesis
;
Triglycerides