1.Effects of leptin on porcine primary adiocytes lipolysis and mRNA expression of key lipolytic enzymes.
Yucheng LI ; Xueli ZHENG ; Gongshe YANG
Chinese Journal of Biotechnology 2008;24(9):1613-1619
Leptin, a cytokine predominantly secreted from fat tissue, plays an important role in regulating organism energy balance. Leptin can stimulate lipolysis, but the mechanism is unclear. In order to study the molecular mechanism of leptin stimulating lipolysis, we systemically studied the mRNA expression of key lipolytic enzymes. Morphological observation, Oil Red O staining and RT-PCR were used to identify pig primary adipocytes; commercial kits were used to measure the glycerol and FFA release; Semiquantitative RT-PCR was used to detect the mRNA expression of key lipolytic enzymes. The results showed that 100 nmol/L leptin up-regulated the mRNA expression of ATGL, TGH-2, HSL, MGL and LPL (P<0.01), but down-regulated the Perilipin mRNA expression (P<0.01). At the same time, leptin promoted the glycerol release in a dose dependent manner (P<0.01), but had no effect on the FFA release (P>0.05). These indicate that leptin may mainly stimulate lipolysis in pig primary adipocytes by up-regulating the expression of ATGL, MGL, LPL and down-regulating the expression of Perilipin. The unchanged FFA release may be resulted from Leptin promoting UCPs mRNA expression and increasing FFA expenditure.
Adipocytes
;
cytology
;
enzymology
;
metabolism
;
Animals
;
Animals, Newborn
;
Cells, Cultured
;
Leptin
;
pharmacology
;
Lipase
;
genetics
;
metabolism
;
Lipolysis
;
drug effects
;
Male
;
Monoacylglycerol Lipases
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Swine
2.Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte.
Bong Hyuk CHOI ; In Sook AHN ; Yu Hee KIM ; Ji Won PARK ; So Young LEE ; Chang Kee HYUN ; Myoung Soo DO
Experimental & Molecular Medicine 2006;38(6):599-605
Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.
RNA, Messenger/genetics/metabolism
;
Mice
;
Leptin/secretion
;
Inflammation Mediators/*metabolism
;
Inflammation/genetics
;
Glycerol/metabolism
;
Gene Expression Regulation/*drug effects
;
Cytokines/genetics
;
Berberine/*pharmacology
;
Animals
;
Adipogenesis/drug effects/genetics
;
Adipocytes/*drug effects/enzymology/*metabolism/secretion
;
3T3-L1 Cells
3.Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.
Jeong Yeh YANG ; Bon Sun KOO ; Mi Kyung KANG ; Hye Won RHO ; Hee Sook SOHN ; Eun Chung JHEE ; Jin Woo PARK
Experimental & Molecular Medicine 2002;34(5):353-360
The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF- induced LPL suppression is not the result of NO overproduction.
3T3 Cells
;
Adipocytes/drug effects/*enzymology/metabolism
;
Animals
;
Cells, Cultured
;
Enzyme Induction/drug effects
;
Enzyme Inhibitors/pharmacology
;
Lipoprotein Lipase/drug effects/metabolism
;
Mice
;
NF-kappa B/antagonists & inhibitors
;
Nitric Oxide/metabolism
;
Nitric-Oxide Synthase/*antagonists & inhibitors/*metabolism
;
Tretinoin/*pharmacology
;
Tumor Necrosis Factor/pharmacology