1.Molluscicidal activity of the secondary metabolites from Streptomyces nigrogriseolus XD 2-7 against Oncomelania hupensis and its preliminary mechanisms of molluscicidal actions.
Yun Tian XING ; Jia Kai YAO ; Guo Li QU ; Su Yang ZHANG ; Jian Rong DAI ; Bai Nian FENG
Chinese Journal of Schistosomiasis Control 2022;34(3):269-276
OBJECTIVE:
To evaluate the storage stability of metabolites from actinomycetes Streptomyces nigrogriseolus XD 2-7 and the mollcuscicidal activity against Oncomelania hupensis in the laboratory, and to preliminarily explore the mechanisms of the molluscicidal activity.
METHODS:
The fermentation supernatant of S. nigrogriseolus XD 2-7 was prepared and stored at -20, 4 °C and 28 °C without light for 10 d; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation supernatant was boiled in a 100 °C water bath for 30 min and recovered to room temperature, and then the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The pH values of the fermentation supernatant were adjusted to 4.0, 6.0 and 9.0 with concentrated hydrochloric acid and sodium hydroxide, and the fermentation supernatant was stilled at room temperature for 12 h, with its pH adjusted to 7.0; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation product of S. nigrogriseolus XD 2-7was isolated and purified four times with macroporous resin, silica gel and octadecylsilane bonded silica gel. The final products were prepared into solutions at concentrations of 10.00, 5.00, 2.50, 1.25 mg/L and 0.63 mg/L, and the molluscicidal effect of the final productswas tested against O. hupensis following immersion for 72 h, while dechlorination water served as blank controls, and 0.10 mg/L niclosamide served as positive control. The adenosine triphosphate (ATP) and adenosine diphosphate (ADP) levels were measured in in O. hupensis soft tissues using high performance liquid chromatography (HPLC) following exposure to the final purified fermentation products of S. nigrogriseolus XD 2-7.
RESULTS:
After the fermentation supernatant of S. nigrogriseolus XD 2-7 was placed at -20, 4 °C and 28 °C without light for 10 d, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100% (30/30) O. hupensis mortality. Following boiling at 100 °C for 30 min, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100.00% (30/30) O. hupensis mortality. Following storage at pH values of 4.0 and 6.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 100.00% (30/30) O. hupensis mortality, and following storage at a pH value of 9.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 33.33% (10/30) O. hupensis mortality (χ2 = 30.000, P < 0.05). The minimum concentration of the final purified fermentation products of S. nigrogriseolus XD 2-7 was 1.25 mg/L for achieving a 100% (30/30) O. hupensis mortality. The ATP level was significantly lower in O. hupensis soft tissues exposed to 0.10 mg/L and 1.00 mg/L of the final purified fermentation products of S. nigrogriseolus XD 2-7 than in controls (F = 7.274, P < 0.05), while no significant difference was detected in the ADP level between the treatment group and controls (F = 2.485, P > 0.05).
CONCLUSIONS
The active mollcuscicidal ingredients of the S. nigrogriseolus XD 2-7 metabolites are maintained stably at -20, 4 °C and 28 °C for 10 d, and are heat and acid resistant but not alkali resistant. The metabolites from S. nigrogriseolus XD 2-7 may cause energy metabolism disorders in O. hupensis, leading to O. hupensis death.
Adenosine Diphosphate/pharmacology*
;
Adenosine Triphosphate
;
Animals
;
Molluscacides/pharmacology*
;
Silica Gel/pharmacology*
;
Snails
;
Streptomyces
;
Water
2.The different contraction between rat gastric longitudinal and circular smooth muscle induced by extracellular nucleotides.
Wen-Su YUAN ; Li-Juan XU ; Meng-Dan LIU ; Yue-Bing WANG ; Dong LI
Chinese Journal of Applied Physiology 2014;30(1):14-17
OBJECTIVETo test the different contrctile responses of extracellular nucleotides, such as ATP, UTP and nucleotide uridine adenosine tetraphosphate (Up4A) in gastric longitudinal muscle (LM) and circular muscle (CM). Examined the effect of P2X and P2Y receptor antagonists (in this study, we used IP5I and suramin) and cyclooxygenase inhibitor (indomethacin) on Up4A induced contractile responses in LM and CM.
METHODSThe rats were sacrificed and the stomachs were opened to gain LM and CM. Using organ bath system to assess contrctile responses of smooth muscle.
RESULTSUp4A could induce contractile responses in both CM and LM, which were similar with ATP and UTP. IP5 did not attenuate Up4A could induce contractions in both LM and CM, but suramin and indomethacin significantly inhibited Up4A contraction in CM, but not in LM.
CONCLUSIONOur results suggest that extracellular nucleosides and their inhibitors induce different responses between LM and CM.
Adenosine Triphosphate ; pharmacology ; Animals ; Dinucleoside Phosphates ; pharmacology ; Indomethacin ; Muscle Contraction ; Muscle, Smooth ; physiology ; Nucleotides ; pharmacology ; Rats ; Suramin ; Uridine Triphosphate ; pharmacology
3.The effect of antioxidant on optimation of blood preservation.
Jing-Han LIU ; Wei HAN ; Feng-Lei LAI ; Yang YU ; Rui LI ; Xi-Lin OUYANG
Journal of Experimental Hematology 2003;11(6):646-649
In order to optimize the preservation of blood, 3 kinds of antioxidant were selected and each of them can be injected directly into vein, then the optimal dose of these antioxidants was chosen using statistical method; ISMC (injectio salvia miltiorrhizae composita), ginaton and the combination of ISMC and ginaton were added into blood as optimal dose, some references as ATP, EI and so on were observed during blood preservation. The results showed that all of the three kinds of antioxidants increased ATP, EI and decreased FHb during blood preservation. It is concluded that both of ISMC and ginaton can effectively optimize the preservation of blood and combination of ISMC and ginaton can produce additive effect.
Adenosine Triphosphate
;
metabolism
;
Antioxidants
;
pharmacology
;
Blood Preservation
;
Erythrocytes
;
drug effects
;
physiology
;
Humans
;
Salvia miltiorrhiza
4.Changes of myocardial mitochondrial Ca2+ transport and effects of ATP on them in the early stage after severe burns.
Wan-Yi LIANG ; Zong-Cheng YANG ; Yue-Sheng HUANG
Chinese Journal of Applied Physiology 2002;18(2):205-206
Adenosine Triphosphate
;
pharmacology
;
Animals
;
Burns
;
metabolism
;
Calcium
;
metabolism
;
Female
;
Male
;
Mitochondria, Heart
;
metabolism
;
Rats
5.PEGylation effectively improves anti-breast cancer efficiency of heat shock protein gp96 inhibitory polypeptide.
Lulu LIU ; Jianwei GAO ; Changfei LI ; Yue WU ; Songdong MENG
Chinese Journal of Biotechnology 2022;38(9):3363-3378
Breast cancer is the most common tumor in female, which seriously threatens the health of women. Triple-negative breast cancer is a subtype with the worst prognosis because of its special physiological characteristics and lack of targeted drugs. Therefore, it is urgent to develop new targeted treatments to improve the prognosis and survival rate of the patients. Previous studies have shown that heat shock protein gp96 is expressed on the membrane of a variety of cancer cells but not on the normal cells. Cell membrane gp96 levels are closely related to the poor prognosis of breast cancer, which may serve as a new target for breast cancer treatment. Based on the structure of gp96, we designed an α-helical peptide p37 that specifically targeting the ATP binding region of gp96. To improve the stability and decrease the degradation of the peptide, the N-terminus or C-terminus of p37 was coupled to PEG2000 or PEG5000 respectively, and four PEGylated polypeptides were obtained: mPEG2000CY, mPEG5000CY, mPEG2000LC, and mPEG5000LC. The PEGylated polypeptides inhibited the proliferation and invasion of breast cancer cell SK-BR-3, among which mPEG2000CY showed the most significant inhibitory effect. The half-life of mPEG2000CY in vivo was significantly longer than p37, and it effectively inhibited the growth of xenografted tumors of triple-negative breast cancer MDA-MB-231. The results provide a basis for the development of new targeted drugs against breast cancer, especially the triple-negative breast cancer.
Adenosine Triphosphate
;
Female
;
Heat-Shock Proteins
;
Humans
;
Peptides/pharmacology*
;
Polyethylene Glycols
;
Triple Negative Breast Neoplasms/pathology*
6.Optimization of high-cell-density fermentation process for S-adenosyl-L-methionine production.
Jiepeng WANG ; Jinjun HAN ; Xiaonan LI ; Peiyi LIU ; Tianwei TAN
Chinese Journal of Biotechnology 2009;25(4):533-536
Poor stability existed in the anaphase of the high-cell-density fermentation of Saccharomyces crevisiae for S-adenosyl-L-methionine (SAM) production in 5 L fermentor. To improve the fermentation stability, we studied the addition of diammonium hydrogen phosphate, sodium glutamate and adenosine disodium triphosphate into glucose feeding solution. Study of four fed-batch cultures showed that, after 34 h fermentation, when dry cell weight reached 100 g/L, the addition of 50 g pre-L-methionine and glucose feeding with 10 g/L adenosine disodium triphosphate was optimal for SAM production. Under this condition, after 65.7 h fermentation, both the dry cell weight and the yield of SAM reached the maximum, 180 g/L and 17.1 g/L respectively.
Adenosine Triphosphate
;
pharmacology
;
Fermentation
;
Phosphates
;
pharmacology
;
S-Adenosylmethionine
;
biosynthesis
;
genetics
;
Saccharomyces cerevisiae
;
enzymology
;
genetics
;
Sodium Glutamate
;
pharmacology
7.Effect of Anti-Oxidative of Ethyl Pyruvate and Taurine on the Red Blood Cell Storage at 4 ℃.
Shu-Qiang GAO ; Shu-Hui GAO ; Chen-Hui ZHU ; Xiao-Yan YUAN ; Li-Xia REN
Journal of Experimental Hematology 2022;30(3):890-896
OBJECTIVE:
To investigate the anti-oxidative effect of ethyl pyruvate (EP) and taurine (TAU) on the quality of red blood cells stored at 4±2 ℃, hemolysis, energy metabolism and lipid peroxidation of the red blood cells in the preservation solution were studied at different intervals.
METHODS:
At 4±2 ℃, the deleukocyte red blood cells were stored in the citrate-phosphate-dextrosesaline-adenine-1 (CPDA-1) preservation (control group), preservation solution with EP (EP-AS), and TAU (TAU-AS) for long-term preservation. The enzyme-linked immunoassay and automatic blood cell analyzer were used to detect hemolysis and erythrocyte parameters. Adenine nucleoside triphosphate (ATP), glycerol 2,3-diphosphate (2,3-DPG) and malondialdehyde (MDA) kits were used to test the ATP, 2,3-DPG and MDA concentration.
RESULTS:
During the preservation, the rate of red blood cell hemolysis in EP-AS and TAU-AS groups were significantly lower than that in CPDA-1 group (P<0.01). The MCV of EP-AS group was increased with the preservation time (r=0.71), while the MCV of the TAU-AS group was significantly lower than that in the other two groups (P<0.05). The concentration of ATP and MDA in EP-AS and TAU-AS groups were significantly higher than that in CPDA-1 group at the 14th day (P<0.01). The concentrations of 2,3-DPG in the EP-AS and TAU-AS groups were significantly higher than that in the CPDA-1 group from the 7th day (P<0.01).
CONCLUSION
EP and TAU can significantly reduce the red blood cell hemolysis rate, inhibit the lipid peroxidation level of red blood cells, and improve the energy metabolism of red blood cells during storage. The mechanism of EP and TAU may be related to their antioxidation and membrane protection effect, so as to improve the red blood cell quality and extend the preservation time.
2,3-Diphosphoglycerate/metabolism*
;
Adenine
;
Adenosine Triphosphate/metabolism*
;
Blood Preservation
;
Citrates/pharmacology*
;
Erythrocytes/metabolism*
;
Glucose/pharmacology*
;
Hemolysis
;
Humans
;
Pyruvates
;
Taurine/pharmacology*
8.Protective effect of ATP on skeletal muscle satellite cells damaged by H₂O₂.
Fei FEI ; Dao-li ZHU ; Li-jun TAO ; Bao-zhu HUANG ; Hong-hong ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(1):76-81
This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H₂O₂in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four groups: normal group, model group (cells treated with 0.1 mmol/L H₂O₂for 50 s), protection group (cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h, and then with 0.1 mmol/L H₂O₂for 50 s), proliferation group (cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h). MTT assay, FITC+PI+DAPI fluorescent staining, Giemsa staining and immunofluorescence were performed to examine cell viability and apoptosis, and apoptosis-related proteins. The results showed that the survival rate of skeletal muscle satellite cells was decreased and the apoptosis rate was increased after H₂O₂treatment (P<0.01). Different doses of ATP had different effects on skeletal muscle satellite cells damaged by H₂O₂: the survival rate of muscle satellite cells treated with ATP at 4, 2, or 1 mmol/L was increased. The protective effect was most profound on cells treated with 2 mmol/L ATP. Immunofluorescence showed that ATP could increase the number of Bcl-2-positive cells (P<0.01) and decrease the number of the Bax-positive cells (P<0.01). It was concluded that ATP could protect skeletal muscle satellite cells against H₂O₂damage in neonatal rats, which may be attributed to the up-regulation of the expression of Bcl-2 and down-regulation of Bax, resulting in the suppression of apoptosis.
Adenosine Triphosphate
;
pharmacology
;
Animals
;
Hydrogen Peroxide
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Satellite Cells, Skeletal Muscle
;
drug effects
9.Progress in the design of selective ATP-competitive kinase inhibitors.
Xiao-qiang DENG ; Ming-li XIANG ; Ruo JIA ; Sheng-yong YANG
Acta Pharmaceutica Sinica 2007;42(12):1232-1236
Kinases play crucial roles in the life of cell. Their functional abnormity usually leads to many human major diseases including tumors. The prospecting of ATP-competitive small-molecule kinase inhibitors targeting kinases of therapeutic interest has become the focus of researches. Due to the high conservation of the catalytic domain of kinases, the selectivity of kinase inhibitors is poor in general. However, along with the development of structural biology and computer-aided drug design, great progress in the research of selective, ATP-competitive kinase inhibitors has been achieved in recent years. In this account, the review has been made on the development of the design of selective kinase inhibitors.
Adenosine Triphosphate
;
chemistry
;
Binding, Competitive
;
Drug Design
;
Molecular Structure
;
Protein Binding
;
Protein Kinase Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
10.Effects of copper-phenanthroline on pentachlorophenol-induced adaptation and cell death of Escherichia coli.
Xue-Wen ZHANG ; Rong-Gui LI ; Xin WANG ; Shuan-Hu ZHOU
Biomedical and Environmental Sciences 2007;20(2):106-112
OBJECTIVETo evaluate the effects of copper-phenanthroline (CuOP) on pentachlorophenol (PCP)-induced adaptation and cell death of Escherichia coli.
METHODSBacterial growth and adaptation to PCP were monitored spectrophotometrically at 600 nm. Inactivation of bacterial cells was determined from colony count on agar dishes. Cellular ATP content and accumulation of PCP were assessed by chemiluminescence and HPLC analysis respectively. The formation of PCP-Cu-OP complex was shown by UV-visible spectra.
RESULTSEscherichia coli (E. coli) could adapt to PCP, a wood preservative and insecticide used in agriculture. The adaptation of E. coli to PCP prevented its death to the synergistic cytotoxicity of CuOP plus PCP and declined cellular accumulation and uncoupling of oxidative phosphorylation of PCP. Furthermore, CuOP and PCP neither produced reactive oxygen species (ROS) nor had a synergistic effect on uncoupling of oxidative phosphorylation in E. coli. The synergistic cytotoxicity of CuOP and PCP in E. coli might be due to the formation of lipophilic PCP-Cu-OP complex.
CONCLUSIONOur data suggested that adaptation of E. coli to PCP decreased the synergistic effects of CuOP and PCP on prokaryotic cell death due to the formation of lipophilic PCP-Cu-OP complex, but it had no effect on the uncoupling of oxidative phosphorylation and production of reactive oxygen species in E. coli.
Adaptation, Physiological ; Adenosine Triphosphate ; metabolism ; Antioxidants ; metabolism ; Apoptosis ; drug effects ; Copper ; pharmacology ; Cytotoxins ; pharmacology ; Drug Resistance, Bacterial ; Drug Synergism ; Escherichia coli ; drug effects ; metabolism ; Pentachlorophenol ; pharmacology ; Phenanthrolines ; pharmacology