1.Changes of mitochondrial calcium, adenosine triphosphate and adenosine diphosphate contents induced by occlusal trauma in rabbit's masseter muscles.
Shu-zhen SUN ; Ping JI ; Qing-guo LAI ; Hui WANG ; Dong QI ; Xi-jun WANG ; Liang WANG ; Ming-zhen WANG
West China Journal of Stomatology 2004;22(4):313-316
OBJECTIVETo study the role of Ca2+ overload and energy metabolism in mitochondria in masticatory muscle dysfunctional induced by occlusal trauma.
METHODSMitochondrial Ca2+ contents were measured with atomic emission spectrophotometer. Mitochondrial ATP and ADP contents were measured with high performance liquid chromatography.
RESULTS(1) Mitochondrial Ca2+ contents of masseter muscle ipsilateral to metal splint in ten and twenty days' experimental groups and that contralateral to metal splint in twenty days' experimental group increased significantly (P < 0.05). (2) Mitochondrial ATP contents of masseter muscle ipsilateral to metal splint in experimental groups were higher than that in control groups and contralateral to metal splint after twenty days. (3) Mitochondrial Ca2+ contents of masseter muscle ipsilateral to metal splint were significantly negatively correlated to the mitochondrial ATP contents (r = -0.780, P < 0.05).
CONCLUSIONCa2+ overload in mitochondria depresses ATP production, which results in energy metabolism disorder in masticatory muscle cells. It may play an important role in the mechanism that occlusal trauma results in masticatory muscle dysfunction.
Adenosine Diphosphate ; chemistry ; Adenosine Triphosphate ; chemistry ; Animals ; Calcium ; chemistry ; Energy Metabolism ; Masseter Muscle ; chemistry ; injuries ; Mitochondria, Muscle ; chemistry ; Rabbits
2.Measuring the shelf life of CPDA and ACD whole blood stored at above 4 degrees C in vitro.
Wei HAN ; Jing-Han LIU ; Tie-Jun WANG ; Rui LI ; Xi-Lin OUYANG ; Xi-Jin LI
Journal of Experimental Hematology 2004;12(1):95-97
In order to measure the shelf life of whole blood stored at above 4 degrees C and provide experimental data for blood preservation and transportation in battle fields, 200 ml whole blood was collected from each of the 10 donors and anticoagulated by CPDA or ACD, then 50 ml whole blood was separated from each one and marked as control group, the rest was marked as test group. The control group was stored at 4 degrees C and RBC ATP concentrations was measured at the end of its shelf life which signed as critical ATP. The test group was stored at above 4 degrees C condition, some items as ATP, FHb (free hemoglobin), serum K(+) and germiculture were tested daily and ensured all of them eligible. When RBC ATP decreased to the level of critical ATP, the time of preservation was considered as shelf life. The results showed that at temperatures from 10 to 33 degrees C, the shelf life of CPDA whole blood ranges from 2.5 days to 18 days, while shelf life of ACD whole blood ranges from 1 day to 13 days. It is concluded that CPDA whole blood stored at above 4 degrees C condition can be sent to the front hospital in effective shelf life so that the wounded can be cured in time.
Adenosine Triphosphate
;
blood
;
Blood Preservation
;
Erythrocytes
;
chemistry
;
Humans
;
Temperature
;
Time Factors
3.Quantitative specific detection of Staphylococcus aureus based on recombinant lysostaphin and ATP bioluminescence.
Yuyuan LI ; Zhiqiang MI ; Xiaoping AN ; Yusen ZHOU ; Yigang TONG
Chinese Journal of Biotechnology 2014;30(8):1283-1290
Quantitative specific detection of Staphylococcus aureus is based on recombinant lysostaphin and ATP bioluminescence. To produce recombinant lysostaphin, the lysostaphin gene was chemically synthesized and inserted it into prokaryotic expression vector pQE30, and the resulting expression plasmid pQE30-Lys was transformed into E. coli M15 for expressing lysostaphin with IPTG induction. The recombinant protein was purified by Ni(2+)-NTA affinity chromatography. Staphylococcus aureus was detected by the recombinant lysostaphin with ATP bioluminescence, and plate count method. The results of the two methods were compared. The recombinant lysostaphin was successfully expressed, and a method of quantitative specific detection of S. aureus has been established, which showed a significant linear correlation with the colony counting. The detection method developed has good perspective to quantify S. aureus.
Adenosine Triphosphate
;
chemistry
;
Chromatography, Affinity
;
Escherichia coli
;
Luminescent Measurements
;
methods
;
Lysostaphin
;
chemistry
;
Recombinant Proteins
;
chemistry
;
Staphylococcus aureus
;
isolation & purification
4.Attapulgite can improve yield and total ferulic acid content of Angelica sinensis by adjusting source-sink relationship.
Jun LUO ; Yin-Quan WANG ; Tong PENG ; Li ZONG ; Yang-Yang YAO ; Shu-Nan LI
China Journal of Chinese Materia Medica 2022;47(15):4042-4047
Attapulgite(ATP), as a fertilizer slow-release agent and soil conditioner, has shown remarkable effect in improving the utilization rate of fertilizer and the yield and quality of agricultural products and Chinese medicinal materials. This study aims to explore the effect of ATP on the growth and root quality of Angelica sinensis. To be specific, Mingui 1 was used, and through the pot(soil culture) experiment in the Dao-di producing area, the effects of conventional chemical fertilizer added with ATP on the morphology, photosynthesis, soil respiration, and content of ferulic acid and volatile oil in roots of Mingui 1 were detected. The underlying mechanism was discussed from the perspective of source-sink relationship. The results showed that ATP, via the fertilizer slow-release effect, could meet the needs of A. sinensis for nutrients at the root expansion stage, improve the net photosynthetic rate of leaves and aboveground biomass of plants, and promote the transfer and accumulation of nutrients from the aboveground part(source) to the underground root(sink) in advance during the dry matter accumulation period of roots, so as to improve the root weight per plant. ATP can increase the content of total ferulic acid(the sum of free ferulic acid and coniferyl ferulate), the main effective component of Angelicae Sinensis Radix, by promoting the synthesis of ferulic acid in the roots and the transformation to coniferyl ferulate. However, it had little effect on the content of volatile oil. ATP had certain influence on soil respiration, which needs to be further explored from root activity, rhizosphere microorganisms, and soil microorganisms. This study can lay a basis for soil remediation and improvement and ecological cultivation of A. sinensis.
Adenosine Triphosphate
;
Angelica sinensis/chemistry*
;
Coumaric Acids
;
Fertilizers/analysis*
;
Magnesium Compounds
;
Oils, Volatile/chemistry*
;
Plant Roots/chemistry*
;
Silicon Compounds
;
Soil
5.Rapid determination of ATP, ADP, AMP and phosphate in drug by 31P NMR spectroscopy.
Tian-bao LI ; Jing LUO ; Bang-shao YIN
Acta Pharmaceutica Sinica 2015;50(5):583-586
The content of ATP, ADP, AMP, sodium phosphate and sodium pyrophosphate were determined by 31P NMR, the linear range of ATP, ADP and AMP were found to be 0.004-0.080 mol x L(-1), sodium phosphate and sodium pyrophosphate were 0.005-0.100 mol x L(-1). The RSD were 0.40%-1.30%, the recovery were 96.9% - 105.2%. The method has been applied to the determination of ATP injection. The impurities of ATP injection were ADP and sodium phosphate. The content of ATP is in line with the requirement of the pharmacopoeia. The results indicated that the method is of good reproducibility, high accuracy, rapid and simple operation, without pretreatment and interference of other elements, 31P NMR is a new and reliable method of analyzing ATP, ADP, AMP and phosphate.
Adenosine Diphosphate
;
analysis
;
Adenosine Monophosphate
;
analysis
;
Adenosine Triphosphate
;
analysis
;
Chemistry, Pharmaceutical
;
methods
;
Diphosphates
;
analysis
;
Magnetic Resonance Spectroscopy
;
Perfusion
;
Pharmaceutical Preparations
;
analysis
;
Phosphates
;
analysis
;
Quality Control
;
Reproducibility of Results
6.Progress in the design of selective ATP-competitive kinase inhibitors.
Xiao-qiang DENG ; Ming-li XIANG ; Ruo JIA ; Sheng-yong YANG
Acta Pharmaceutica Sinica 2007;42(12):1232-1236
Kinases play crucial roles in the life of cell. Their functional abnormity usually leads to many human major diseases including tumors. The prospecting of ATP-competitive small-molecule kinase inhibitors targeting kinases of therapeutic interest has become the focus of researches. Due to the high conservation of the catalytic domain of kinases, the selectivity of kinase inhibitors is poor in general. However, along with the development of structural biology and computer-aided drug design, great progress in the research of selective, ATP-competitive kinase inhibitors has been achieved in recent years. In this account, the review has been made on the development of the design of selective kinase inhibitors.
Adenosine Triphosphate
;
chemistry
;
Binding, Competitive
;
Drug Design
;
Molecular Structure
;
Protein Binding
;
Protein Kinase Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
7.Structural and evolutionary characteristics of pyruvate phosphate dikinase in Giardia lamblia and other amitochondriate protozoa.
Xianmin FENG ; Chunlin YANG ; Wenyu ZHENG ; Jianfan WEN
Chinese Medical Journal 2014;127(23):4097-4103
BACKGROUNDPyruvate phosphate dikinase (PPDK) reversibly catalyzes the interconversion of phosphoenolpyruvate (PEP) and pyruvic acid, leading to catabolism and adenosine triphosphate (ATP) synthesis or gluconeogenesis and ATP consumption. Molecular modeling of PPDKs from divergent organisms demonstrates that the orientation of the phosphorylatable histidine residue within the central domain of PPDK determines whether this enzyme promotes catabolism or gluconeogenesis. The goal of this study was to determine whether PDDK from Giardia underwent adaptive evolution in order to produce more energy under anaerobic conditions.
METHODSA total of 123 PPDK sequences from protozoans, proteobacteria, plants, and algae were selected, based upon sequence similarities to Giardia lamblia PPDK and Zea mays PPDK. Three-dimensional (3-D) models were generated for PPDKs from divergent organisms and were used to compare the orientation of the phosphorylatable histidine residue within the central domain of PPDKs. These PPDKs were compared using a maximum-likelihood tree.
RESULTSFor PPDK from Giardia, as well as from other anaerobic protozoans, the central domain tilted toward the N-terminal nucleotide-binding domain, indicating that this enzyme catalyzed ATP synthesis. Furthermore, the orientation of this central domain was determined by interactions between the N- and C-terminal domains. Phylogenetic analysis of the N- and C-terminal sequences of PPDKs from different species suggested that PPDK has likely undergone adaptive evolution in response to differences in environmental and metabolic conditions.
CONCLUSIONThese results suggested that PPDK in anaerobic organisms is functionally adapted to generate energy more efficiently in an anaerobic environment.
Adenosine Triphosphate ; metabolism ; Evolution, Molecular ; Giardia lamblia ; enzymology ; Protozoan Proteins ; chemistry ; classification ; genetics ; Pyruvate, Orthophosphate Dikinase ; chemistry ; classification ; genetics
8.Respiratory supercomplexes: structure, function and assembly.
Rasika VARTAK ; Christina Ann-Marie PORRAS ; Yidong BAI
Protein & Cell 2013;4(8):582-590
The mitochondrial respiratory chain consists of 5 enzyme complexes that are responsible for ATP generation. The paradigm of the electron transport chain as discrete enzymes diffused in the inner mitochondrial membrane has been replaced by the solid state supercomplex model wherein the respiratory complexes associate with each other to form supramolecular complexes. Defects in these supercomplexes, which have been shown to be functionally active and required for forming stable respiratory complexes, have been associated with many genetic and neurodegenerative disorders demonstrating their biomedical significance. In this review, we will summarize the functional and structural significance of supercomplexes and provide a comprehensive review of their assembly and the assembly factors currently known to play a role in this process.
Adenosine Triphosphate
;
metabolism
;
Arylamine N-Acetyltransferase
;
metabolism
;
Cardiolipins
;
metabolism
;
Electron Transport
;
Humans
;
Mitochondria
;
enzymology
;
metabolism
;
Multienzyme Complexes
;
chemistry
;
metabolism
9.Regulation of extracellular ATP onchlorophyll content and fluorescence characteristics of Angelica sinensis seedlings under drought and low temperature stress.
Mu-Dan ZHANG ; Yuan FENG ; Zhen-Zhen SHI ; Jia-Xin CAO ; Ling-Yun JIA ; Han-Qing FENG
China Journal of Chinese Materia Medica 2019;44(7):1305-1313
As an important signal molecule, extracellular ATP(eATP) can regulate many physiological and biochemical responses to plant stress. In this study, the regulation of extracellular ATP(eATP) on chlorophyll content and chlorophyll fluorescence parameters of Angelica sinensis seedlings were studied under drought and low temperature stress. The results showed that all the chlorophyll content, the actual photochemical efficiency [Y(Ⅱ)], the electron transfer rate(ETR), the photochemical quenching coefficient(qP and qL) of A. sinensis leaves were significantly decreased under drought and low temperature stress, respectively. At the same time, non-photochemical quenching(NPQ and qN) were also all significantly increased, respectively. The application of eATP alleviated the decrease of chlorophyll content, Y(Ⅱ), ETR, qP and qL of A. sinensis leaves under drought and low temperature stress, and eliminated the increase of qN and NPQ. The results indicated that eATP could effectively increase the open ratio of PSⅡ reaction centers, and improve the electron transfer rate and light energy conversion efficiency of PSⅡ of A. sinensis leaves under drought and low temperature stress. It is beneficial to enhance the chlorophyll synthesis and the adaptability of PSⅡ about A. sinensis seedlings to drought and low temperature stress.
Adenosine Triphosphate
;
pharmacology
;
Angelica sinensis
;
chemistry
;
physiology
;
Chlorophyll
;
analysis
;
Cold Temperature
;
Droughts
;
Fluorescence
;
Photosynthesis
;
Plant Leaves
;
chemistry
;
Seedlings
;
chemistry
;
physiology
;
Stress, Physiological
;
Water
10.What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?
Zheng-zheng SHI ; Jia-wei ZHANG ; Shu ZHENG
Journal of Zhejiang University. Science. B 2007;8(3):170-176
This article is to summarize the molecular and functional analysis of the gene "suppression of tumorigenicity 13" (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (Hip), a co-factor (co-chaperone) of the 70-kDa heat shock proteins (Hsc/Hsp70). By collaborating with other positive co-factors such as Hsp40 and the Hsp70-Hsp90 organizing protein (Hop), or competing with negative co-factors such as Bcl2-associated athanogen 1 (Bag1), Hip facilitates may facilitate the chaperone function of Hsc/Hsp70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and regulators of proliferation or apoptosis. Although the nomenclature of ST13 implies a role in the suppression of tumorigenicity (ST), to date available experimental data are not sufficient to support its role in cancer development, except for the possible down-regulation of ST13 in gastric and colorectal cancers. Further investigation of this gene at the physiological level would benefit our understanding of diseases such as endocrinological disorders, cancer, and neurodegeneration commonly associated with protein misfolding.
Adenosine Triphosphate
;
metabolism
;
Animals
;
Carrier Proteins
;
chemistry
;
genetics
;
physiology
;
Cloning, Molecular
;
HSP70 Heat-Shock Proteins
;
metabolism
;
Humans
;
Protein Folding
;
Tumor Suppressor Proteins
;
chemistry
;
genetics
;
physiology