2.Clinical feature difference between juvenile amyotrophic lateral sclerosis with SPTLC1 and FUS mutations.
Peishan WANG ; Qiao WEI ; Hongfu LI ; Zhi-Ying WU
Chinese Medical Journal 2023;136(2):176-183
BACKGROUND:
Juvenile amyotrophic lateral sclerosis (JALS) is an uncommon form of amyotrophic lateral sclerosis whose age at onset (AAO) is defined as prior to 25 years. FUS mutations are the most common cause of JALS. SPTLC1 was recently identified as a disease-causative gene for JALS, which has rarely been reported in Asian populations. Little is known regarding the difference in clinical features between JALS patients carrying FUS and SPTLC1 mutations. This study aimed to screen mutations in JALS patients and to compare the clinical features between JALS patients with FUS and SPTLC1 mutations.
METHODS:
Sixteen JALS patients were enrolled, including three newly recruited patients between July 2015 and August 2018 from the Second Affiliated Hospital, Zhejiang University School of Medicine. Mutations were screened by whole-exome sequencing. In addition, clinical features such as AAO, onset site and disease duration were extracted and compared between JALS patients carrying FUS and SPTLC1 mutations through a literature review.
RESULTS:
A novel and de novo SPTLC1 mutation (c.58G>A, p.A20T) was identified in a sporadic patient. Among 16 JALS patients, 7/16 carried FUS mutations and 5/16 carried respective SPTLC1 , SETX , NEFH , DCTN1 , and TARDBP mutations. Compared with FUS mutation patients, those with SPTLC1 mutations had an earlier AAO (7.9 ± 4.6 years vs. 18.1 ± 3.9 years, P < 0.01), much longer disease duration (512.0 [416.7-607.3] months vs. 33.4 [21.6-45.1] months, P < 0.01), and no onset of bulbar.
CONCLUSION
Our findings expand the genetic and phenotypic spectrum of JALS and help to better understand the genotype-phenotype correlation of JALS.
Humans
;
Amyotrophic Lateral Sclerosis/genetics*
;
DNA Helicases/genetics*
;
Genetic Association Studies
;
Multifunctional Enzymes/genetics*
;
Mutation/genetics*
;
RNA Helicases/genetics*
;
RNA-Binding Protein FUS/genetics*
;
Serine C-Palmitoyltransferase/genetics*
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
4.Analysis of 4 children with DYNC1H1 gene related spinal muscular atrophy with lower extremity predominant 1.
Chang Jian YANG ; Shuang WANG ; Dan Dan TAN ; Yi Dan LIU ; Yan Bin FAN ; Cui Jie WEI ; Dan Yu SONG ; Ying ZHU ; Hui XIONG
Chinese Journal of Pediatrics 2023;61(2):154-158
Objective: To investigate the clinical features and gene variation characteristics of children with dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene associated spinal muscular atrophy with lower extremity predominant (SMALED) 1. Methods: The clinical data of 4 SMALED1 children admitted to Peking University First Hospital from December 2018 to May 2021, who were found to have pathogenic variation of DYNC1H1 gene through genetic testing, except for other genes known to be related to motor retardation, were retrospectively summarized to analyze the phenotype and genotype characteristics. Results: There were 3 males and 1 female. The age of onset was 1 year, 1 day, 1 day and 4 months, respectively. The age of diagnosis was 4 years and 10 months, 9 months, 5 years and 9 months, and 3 years and 1 month, respectively. The clinical manifestations were muscle weakness and muscular atrophy of lower limbs, 2 cases with foot deformity, 1 case with early non progressive joint contracture, 1 case with hip dislocation and 1 case with mental retardation. De novo heterozygous missense variations in DYNC1H1 gene were found in all 4 children. According to the rating of American College of medical genetics and genomics, they were all possible pathogenic and pathogenic variations, with p.R598C, p.P776L, p.Y1109D variations had been reported, and p.I1086R variation had not been reported. Conclusions: For those with unexplained lower limb muscle weakness, muscle atrophy, joint contracture and foot deformity, upper limb motor ability related retention, with or without mental retardation, as well as the motor ability progresses slowly, it is necessary to consider the possibility of SMALED1 and the detection of DYNC1H1 gene when necessary.
Female
;
Male
;
Humans
;
Intellectual Disability
;
Retrospective Studies
;
Muscular Atrophy, Spinal/genetics*
;
Lower Extremity
;
Muscle Weakness
;
Muscular Atrophy
;
Contracture
;
Cytoplasmic Dyneins/genetics*
5.Excess Oxygen Supply for Different Time Periods Affect Energy Metabolism in Rat Alveolar Epithelial Type Ⅱ Cells.
Rong-Rong HUANG ; Shan-Shan QU ; Hong GUO ; Su-Heng CHEN ; Chuan-Qi YANG ; Jun-Mei ZHANG ; Yu-Lan LI
Acta Academiae Medicinae Sinicae 2023;45(1):9-15
Objective To observe the effect of excess oxygen supply for different time periods on the mitochondrial energy metabolism in alveolar epithelial type Ⅱ cells. Methods Rat RLE-6TN cells were assigned into a control group (21% O2 for 4 h) and excess oxygen supply groups (95% O2 for 1,2,3,and 4 h,res-pectively).The content of adenosine triphosphate (ATP),the activity of mitochondrial respiratory chain complex V,and the mitochondrial membrane potential were determined by luciferase assay,micro-assay,and fluorescent probe JC-1,respectively.Real-time fluorescence quantitative PCR was employed to determine the mRNA levels of NADH dehydrogenase subunit 1 (ND1),cytochrome b (Cytb),cytochrome C oxidase subunit I (COXI),and adenosine triphosphatase 6 (ATPase6) in the core subunits of mitochondrial respiratory chain complexes Ⅰ,Ⅲ,Ⅳ,and Ⅴ,respectively. Results Compared with the control group,excess oxygen supply for 1,2,3,and 4 h down-regulated the mRNA levels of ND1 (<i>qi>=24.800,<i>Pi><0.001;<i>qi>=13.650,<i>Pi><0.001;<i>qi>=9.869,<i>Pi><0.001;<i>qi>=20.700,<i>Pi><0.001),COXI (<i>qi>=16.750,<i>Pi><0.001;<i>qi>=10.120,<i>Pi><0.001;<i>qi>=8.476,<i>Pi><0.001;<i>qi>=14.060,<i>Pi><0.001),and ATPase6 (<i>qi>=22.770,<i>Pi><0.001;<i>qi>=15.540,<i>Pi><0.001;<i>qi>=12.870,<i>Pi><0.001;<i>qi>=18.160,<i>Pi><0.001).Moreover,excess oxygen supply for 1 h and 4 h decreased the ATPase activity (<i>qi>=9.435,<i>Pi><0.001;<i>qi>=11.230,<i>Pi><0.001) and ATP content (<i>qi>=5.615,<i>Pi>=0.007;<i>qi>=5.029,<i>Pi>=0.005).The excess oxygen supply for 2 h and 3 h did not cause significant changes in ATPase activity (<i>qi>=0.156,<i>Pi>=0.914;<i>qi>=3.197,<i>Pi>=0.116) and ATP content (<i>qi>=0.859,<i>Pi>=0.557;<i>qi>=1.273,<i>Pi>=0.652).There was no significant difference in mitochondrial membrane potential among the groups (<i>Fi>=0.303,<i>Pi>=0.869). Conclusion Short-term excess oxygen supply down-regulates the expression of the core subunits of mitochondrial respiratory chain complexes and reduces the activity of ATPase,leading to the energy metabolism disorder of alveolar epithelial type Ⅱ cells.
Animals
;
Rats
;
Energy Metabolism
;
Adenosine Triphosphate
;
Adenosine Triphosphatases
;
RNA, Messenger
;
Oxygen
6.Genetic analysis of a child with Kartagener syndrome due to novel compound heterozygous variants of DNAH5 gene.
Shan ZHANG ; Chaobing WANG ; Yong ZHANG ; Yandong HU ; Xu LI ; Chuang ZHI
Chinese Journal of Medical Genetics 2023;40(1):71-75
OBJECTIVE:
To explore the clinical characteristics and genetic basis of a child with Kartagener syndrome (KTS).
METHODS:
Trio-whole exome sequencing was carried out for the child and his parents, and candidate variants were verified by Sanger sequencing. Changes in protein structure due to missense variants were simulated and analyzed, and the Human Splicing Finder 3.0 (HSF 3.0) online platform was used to predict the effect of the variant of the non-coding region.
RESULTS:
The child had featured bronchiectasis, sinusitis and visceral inversion. Genetic testing revealed that he has harbored compound heterozygous variants of the DNAH5 gene, namely c.5174T>C and c.7610-3T>G. Sanger sequencing confirmed the existence of the variants. The variants were not found in the dbSNP, 1000 Genomes, ExAC, ClinVar and HGMD databases. Protein structural analysis suggested that the c.5174T>C (p.Leu1725Pro) variant may affect the stability of local structure and its biological activity. The results of HSF 3.0 analysis suggested that the c.7610-3T>G variant has probably destroyed a splicing receptor to affect the transcription process.
CONCLUSION
The compound heterozygous variants of the DNAH5 gene probably underlay the pathogenesis in the child. Above finding may facilitate the understanding of the clinical characteristics and genetic basis of KTS, and further expand the spectrum of DNAH5 gene variants.
Male
;
Humans
;
Child
;
Mutation
;
Kartagener Syndrome/genetics*
;
Genetic Testing
;
Mutation, Missense
;
Exome Sequencing
;
Axonemal Dyneins/genetics*
7.<i>CHD1i> deletion stabilizes HIF1α to promote angiogenesis and glycolysis in prostate cancer.
Yu-Zhao WANG ; Yu-Chen QIAN ; Wen-Jie YANG ; Lei-Hong YE ; Guo-Dong GUO ; Wei LV ; Meng-Xi HUAN ; Xiao-Yu FENG ; Ke WANG ; Zhao YANG ; Yang GAO ; Lei LI ; Yu-Le CHEN
Asian Journal of Andrology 2023;25(2):152-157
Chromodomain-helicase-DNA-binding protein 1 (CHD1) deletion is among the most common mutations in prostate cancer (PCa), but its role remains unclear. In this study, RNA sequencing was conducted in PCa cells after clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-based CHD1 knockout. Gene set enrichment analysis (GSEA) indicated upregulation of hypoxia-related pathways. A subsequent study confirmed that CHD1 deletion significantly upregulated hypoxia-inducible factor 1α (HIF1α) expression. Mechanistic investigation revealed that CHD1 deletion upregulated HIF1α by transcriptionally downregulating prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase catalyzing the hydroxylation of HIF1α and thus promoting its degradation by the E3 ligase von Hippel-Lindau tumor suppressor (VHL). Functional analysis showed that CHD1 deletion promoted angiogenesis and glycolysis, possibly through HIF1α target genes. Taken together, these findings indicate that CHD1 deletion enhances HIF1α expression through PHD2 downregulation and therefore promotes angiogenesis and metabolic reprogramming in PCa.
Male
;
Humans
;
Von Hippel-Lindau Tumor Suppressor Protein/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Hypoxia
;
Prostatic Neoplasms/pathology*
;
Glycolysis
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Line, Tumor
;
DNA Helicases/metabolism*
8.Estrogen upregulates DNA2 expression through the PI3K-AKT pathway in endometrial carcinoma.
Xinyan WANG ; Xiuling XU ; Ting ZHANG ; Yang JIN ; Sheng XU ; Lifeng CHEN ; Yucheng LAI ; Ling ZHANG ; Ruolang PAN ; Yan YU
Journal of Zhejiang University. Science. B 2023;24(3):262-268
Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011). Type I accounts for approximately 80% of cases, of which the majority are endometrioid carcinomas, and the remaining are mucinous adenocarcinomas (Setiawan et al., 2013). It is generally recognized that long-term stimulation by high estrogen levels with the lack of progesterone antagonism is the most important risk factor; meanwhile, there is no definite conclusion on the specific pathogenesis. The incidence of endometrial cancer has been on the rise during the past two decades (Constantine et al., 2019; Gao et al., 2022; Luo et al., 2022). Moreover, the development of assisted reproductive technology and antiprogestin therapy following breast cancer surgery has elevated the risk of developing type I endometrial cancer to a certain extent (Vassard et al., 2019). Therefore, investigating the influence of estrogen in type I endometrial cancer may provide novel concepts for risk assessment and adjuvant therapy, and at the same time, provide a basis for research on new drugs to treat endometrial cancer.
Female
;
Humans
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinases
;
Endometrial Neoplasms
;
Estrogens
;
Breast Neoplasms
;
DNA Helicases
9.Short-term exposure to gossypol causes reversible reproductive toxicity and nephrotoxicity in mice.
Hui WANG ; Zhi Yan PIAO ; Hui MA ; Lin Yu CAO ; Jun LIU ; Jun Zhu WU
Journal of Southern Medical University 2023;43(2):251-256
OBJECTIVE:
To study the toxic effects of short-term exposure to gossypol on the testis and kidney in mice and whether these effects are reversible.
METHODS:
Twenty 7 to 8-week-old male mice were randomized into blank control group, solvent control group, gossypol treatment group and drug withdrawal group. In the former 3 groups, the mice were subjected to daily intragastric administration of 0.3 mL of purified water, 1% sodium carboxymethylcellulose solution, and 30 mg/mL gossypol solution for 14 days, respectively; In the drug withdrawal group, the mice were treated with gossypol solution in the same manner for 14 days followed by treatment with purified water for another 14 days. After the last administration, the mice were euthanized and tissue samples were collected. The testicular tissue was weighed and observed microscopically with HE and PAS staining; the kidney tissue was stained with HE and examined for mitochondrial ATPase activity.
RESULTS:
Compared with those in the control group, the mice with gossypol exposure showed reduced testicular seminiferous epithelial cells with rounded seminiferous tubules, enlarged space between the seminiferous tubules, interstitium atrophy of the testis, and incomplete differentiation of the spermatogonia. The gossypol-treated mice also presented with complete, non-elongated spermatids, a large number of cells in the state of round spermatids, and negativity for acrosome PAS reaction; diffuse renal mesangial cell hyperplasia, increased mesangial matrix, and adhesion of the mesangium to the wall of the renal capsule were observed, with significantly shrinkage or even absence of the lumens of the renal capsules and reduced kidney mitochondrial ATPase activity. Compared with the gossypol-treated mice, the mice in the drug withdrawal group showed obvious recovery of morphologies of the testis and the kidney, acrosome PAS reaction and mitochondrial ATPase activity.
CONCLUSIONS
Shortterm treatment with gossypol can cause reproductive toxicity and nephrotoxicity in mice, but these toxic effects can be reversed after drug withdrawal.
Mice
;
Male
;
Animals
;
Gossypol/toxicity*
;
Testis
;
Seminiferous Tubules
;
Spermatids
;
Spermatogenesis
;
Adenosine Triphosphatases/pharmacology*
10.Clinical feature and genetic analysis of a patient with Idiopathic hypogonadotropic hypogonadism due to a novel variant of CHD7 gene.
Xin WANG ; Qian DENG ; Juanjuan WANG ; Wenjuan CAI ; Jian GAO ; Yanping HAN ; Yuqing CHEN
Chinese Journal of Medical Genetics 2023;40(7):847-850
OBJECTIVE:
To explore the clinical feature and genetic etiology of a patient with normosmic idiopathic hypogonadotropic hypogonadism (nIHH) due to variant of CHD7 gene.
METHODS:
A patient who had presented at Anhui Provincial Children's Hospital in October 2022 was selected as the study subject. Clinical data of the patient was collected. The patient and his parents were subjected to trio-whole exome sequencing. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The patient had featured delayed development of secondary sexual characteristics but normal olfactory function. Genetic testing revealed that he has harbored a c.3052C>T (p.Pro1018Ser) missense variant of the CHD7 gene, for which both of his parents were of the wild type. The variant has not been recorded in the PubMed and HGMD databases. Analysis of amino acid sequences suggested that the variant site is highly conserved, and the variant may affect the stability of protein structure. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.3032C>T variant was classified as a likely pathogenic (PS2+PM2_Supporting+PP2+PP3+PP4).
CONCLUSION
The delayed development of secondary sexual characteristics of the patient may be attributed to the c.3052C>T (p.Pro1018Ser) variant of the CHD7 gene. Above finding has expanded the variation spectrum of the CHD7 gene.
Child
;
Humans
;
Male
;
Amino Acid Sequence
;
Computational Biology
;
DNA Helicases/genetics*
;
DNA-Binding Proteins/genetics*
;
Genetic Testing
;
Genomics
;
Hypogonadism/genetics*
;
Mutation

Result Analysis
Print
Save
E-mail