1.Novel bi-allelic variants in DNAH10 lead to multiple morphological abnormalities of sperm flagella and male infertility.
Muhammad SHOAIB ; Muhammad ZUBAIR ; Wasim SHAH ; Meftah UDDIN ; Ansar HUSSAIN ; Ghulam MUSTAFA ; Fazal RAHIM ; Huan ZHANG ; Imtiaz ALI ; Tanveer ABBAS ; Yousaf RAZA ; Sui-Xing FAN ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(4):516-523
Multiple morphological abnormalities of sperm flagella (MMAF) is a severe form of asthenoteratozoospermia, characterized by morphological abnormalities and reduced motility of sperm, causing male infertility. Although approximately 60% of MMAF cases can be explained genetically, the etiology of the remaining cases is unclear. Here, we identified two novel compound heterozygous variants in the gene, dynein axonemal heavy chain 10 ( DNAH10 ), in three patients from two unrelated Pakistani families using whole-exome sequencing (WES), including one compound heterozygous mutation ( DNAH10 : c.9409C>A [p.P3137T]; c.12946G>C [p.D4316H]) in family 1 and another compound heterozygous mutation ( DNAH10 : c.8849G>A [p.G2950D]; c.11509C>T [p.R3687W]) in family 2. All the identified variants are absent or rare in public genome databases and are predicted to have deleterious effects according to multiple bioinformatic tools. Sanger sequencing revealed that these variants follow an autosomal recessive mode of inheritance. Hematoxylin and eosin (H&E) staining revealed MMAF, including sperm head abnormalities, in the patients. In addition, immunofluorescence staining revealed loss of DNAH10 protein signals along sperm flagella. These findings broaden the spectrum of DNAH10 variants and expand understanding of the genetic basis of male infertility associated with the MMAF phenotype.
Adult
;
Humans
;
Male
;
Alleles
;
Asthenozoospermia/pathology*
;
Axonemal Dyneins/genetics*
;
Dyneins/genetics*
;
Exome Sequencing
;
Infertility, Male/pathology*
;
Mutation
;
Pakistan
;
Pedigree
;
Sperm Tail/pathology*
2.A novel frameshift variant in AXDND1 may cause multiple morphological abnormalities of the sperm flagella in a consanguineous Pakistani family.
Imtiaz ALI ; Meng-Lei YANG ; Fazal RAHIM ; Haider ALI ; Aurang ZEB ; Nisar AHMAD ; Yousaf RAZA ; Wang YUE ; Muhammad SHOAIB ; Tanveer ABBAS ; Wasim SHAH ; Hui MA ; Huan ZHANG ; Hao YIN ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(6):691-696
The syndrome of multiple morphological abnormalities of the sperm flagella (MMAF) is one of the most serious kinds of sperm defects, leading to asthenoteratozoospermia and male infertility. In this study, we use whole-exome sequencing to identify genetic factors that account for male infertility in a patient born from a consanguineous Pakistani couple. A homozygous frameshift mutation (c.1399_1402del; p.Gln468ArgfsTer2) in axonemal dynein light chain domain containing 1 ( AXDND1 ) was identified in the patient. Sanger sequencing data showed that the mutation was cosegregated recessively with male infertility in this family. Papanicolaou staining and scanning electron microscopy analysis of the sperm revealed severely abnormal flagellar morphology in the patient. Immunofluorescence and western blot showed undetectable AXDND1 expression in the sperm of the patient. Transmission electron microscopy analysis showed disorganized sperm axonemal structure in the patient, particularly missing the central pair of microtubules. Immunofluorescence staining showed the absence of sperm-associated antigen 6 (SPAG6) and dynein axonemal light intermediate chain 1 (DNALI1) signals in the sperm flagella of the patient. These findings indicate that AXDND1 is essential for the organization of flagellar axoneme and provide direct evidence that AXDND1 is a MMAF gene in humans, thus expanding the phenotypic spectrum of AXDND1 frameshift mutations.
Humans
;
Male
;
Sperm Tail/ultrastructure*
;
Frameshift Mutation
;
Infertility, Male/pathology*
;
Pakistan
;
Pedigree
;
Consanguinity
;
Axonemal Dyneins/genetics*
;
Adult
;
Spermatozoa
;
Exome Sequencing
3.Role of <i>Brg1i> in regulating the Wnt/β-catenin signaling pathway in a bronchopulmonary dysplasia model.
Ling GUAN ; Mao-Zhu XU ; Yao-Zheng LING ; Li-Li YANG ; Ling-Huan ZHANG ; Sha LIU ; Wen-Jing ZOU ; Zhou FU
Chinese Journal of Contemporary Pediatrics 2025;27(6):731-739
OBJECTIVES:
To investigate the role and mechanism of Brahma-related gene 1 (<i>Brg1i>) in regulating the Wnt/β-catenin signaling pathway in a bronchopulmonary dysplasia (BPD) model.
METHODS:
Wild-type C57BL/6 and <i>Brg1i>f1/f1 mice were randomly divided into four groups: wild-type control, wild-type BPD, <i>Brg1i>f1/f1 control, and <i>Brg1i>f1/f1 BPD (<i>ni>=5 each). Immortalized mouse pulmonary alveolar type 2 cells (imPAC2) were cultured, and <i>Brg1i> gene was knocked down using lentivirus transfection technology. Cells were divided into three groups: control, empty vector, and <i>Brg1i> knockdown. Hematoxylin and eosin staining and immunofluorescence were used to detect pathological changes in mouse lung tissue. Western blot and real-time fluorescent quantitative PCR were used to measure Brg1 protein and mRNA expression levels in mouse lung tissue. Western blot and immunofluorescence were used to detect the expression of homeodomain-containing protein homeobox (HOPX), surfactant protein C (SPC), and Wnt/β-catenin signaling pathway proteins in mouse lung tissue and imPAC2 cells. The CCK8 assay was used to assess the proliferation of imPAC2 cells, and co-immunoprecipitation was performed to verify the interaction between Brg1 and β-catenin proteins in imPAC2 cells.
RESULTS:
Compared to the <i>Brg1i>f1/f1 control group and wild-type BPD group, the <i>Brg1i>f1/f1 BPD group showed increased alveolar diameter and SPC protein expression, and decreased relative density of pulmonary vasculature and HOPX protein expression (<i>Pi><0.05). Compared to the control group, the <i>Brg1i> knockdown group showed increased cell proliferation ability, protein expression levels of SPC, Wnt5a and β-catenin, and β-catenin protein fluorescence intensity, along with decreased HOPX protein expression (<i>Pi><0.05). An interaction between Brg1 and β-catenin proteins was confirmed.
CONCLUSIONS
The <i>Brg1i> gene may promote the proliferation of alveolar type 2 epithelial cells by regulating the Wnt/β-catenin signaling pathway, thus influencing the occurrence and development of BPD.
Animals
;
DNA Helicases/genetics*
;
Transcription Factors/genetics*
;
Wnt Signaling Pathway/physiology*
;
Nuclear Proteins/genetics*
;
Mice
;
Bronchopulmonary Dysplasia/etiology*
;
Mice, Inbred C57BL
;
beta Catenin/physiology*
;
Disease Models, Animal
;
Cell Proliferation
;
Lung/pathology*
;
Male
4.The Relationship between Ig Class Switch Recombination and MMR Protein, Microsatellite Phenotype in Extranodal Marginal Zone Lymphoma of Mucosa-associated Lymphoid Tissue.
Hong-Xia WANG ; Jun CHEN ; Jing LI ; Guo-Feng LU ; Xiu-Hua HAN ; Rong YANG ; Ya-Jun JIANG
Journal of Experimental Hematology 2025;33(4):1036-1041
OBJECTIVE:
To investigate the relationship between Ig class switch recombination (CSR) and mismatch repair (MMR) protein, microsatellite phenotype in extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma).
METHODS:
Forty cases of MALT lymphoma archived in the Department of Pathology, Jiading District Central Hospital, Shanghai University of Medicine & Health Sciences were selected as the observation group, and twenty cases of benign lymphoid tissue hyperplasia were as the control group. The expressions of IgG, IgM, IgD, and IgA in both groups were detected by immunohistochemical double staining, and MMR proteins including MLH1, MSH2, MSH6, and PMS2 in both groups were detected by immunohistochemistry. Multiplex fluorescence PCR capillary electrophoresis was used to detect microsatellite phenotype in tumor and adjacent tissues of the experimental group.
RESULTS:
In the observation group, the proportions of single Ig heavy chain expression (modeⅠ), negative expression (modeⅡ), and multiple expression (mode Ⅲ) were 65% (26/40), 27.5% (11/40), and 7.5% (3/40), respectively, while in the control group were 0 (0/20), 5% (1/20), and 95% (19/20). The proportion of Ig heavy chain expression mode Ⅰ+Ⅱ in the observation group was 92.5%, which was significantly higher than 5% in the control group (<i>Pi> < 0.01). In the observation group, partial deletion of MMR protein was observed in 3 cases (7.5%), including 2 cases of MSH6 deletion and 1 case of both MSH6 and PMS2 deletion. In the control group, there was 1 case (5%) with PMS2 deletion. There was no significant difference in the deletion rate of MMR protein between the two groups ( <i>Pi> >0.05). A total of 5 cases of microsatellite instability (MSI) were detected in the observation group, including 1 case of low-frequency MSI (MSI-L), 4 cases of high-frequency MSI (MSI-H), and 2 cases of MSI-H with MSH6 deletion. When the loss expression of MSI-H or MMR protein was counted as a positive result, the MSI-H rate detected by PCR capillary electrophoresis was 10% (4/40), which was slightly higher than the MMR protein deletion rate detected by immunohistochemistry (7.5%, 3/40), but there was no statistically significant difference between the two groups (<i>Pi> >0.05). The MMR protein deletion rates among the Ig heavy chain protein expression mode Ⅰ, mode Ⅱ, and mode Ⅲ groups were 0 (0/26), 18.2% (2/11), and 33.3% (1/3), respectively. There was a statistically significant difference in the constituent ratios among the three groups (<i>Pi> < 0.05). The MMR protein deletion rates among the MSS, MSI-L, and MSI-H groups were 2.9% (1/35), 0 (0/1), and 50% (2/4), respectively. There was a statistically significant difference in the constituent ratios among the three groups (<i>Pi> < 0.05). MMR protein deficiency was positively correlated with Ig heavy chain expression pattern and MSI ( <i>ri> =0.41, <i>Pi> < 0.05; <i>ri> =0.48, <i>Pi> < 0.05), but Ig heavy chain expression pattern was not correlated with MSI ( <i>ri> =0.02, <i>Pi> >0.05).
CONCLUSION
Ig heavy chain CSR detection is helpful for the differential diagnosis of MALT lymphoma. Low frequency MMR protein deletion and MSI-H phenotype exist in MALT lymphoma, which may be of certain value for the study of its occurrence, development and clinical treatment.
Humans
;
Lymphoma, B-Cell, Marginal Zone/genetics*
;
DNA Mismatch Repair
;
Immunoglobulin Class Switching
;
DNA-Binding Proteins/metabolism*
;
MutS Homolog 2 Protein
;
Microsatellite Repeats
;
Phenotype
;
MutL Protein Homolog 1
;
Mismatch Repair Endonuclease PMS2
;
Male
5.Non small cell lung cancer with SMARCA4 deficiency harboring rare EGFR mutations exhibited significant tumor response when treated with afatinib: a case report.
Xiaotong QIU ; Liangkun YOU ; Chongwei WANG ; Jin SHENG
Frontiers of Medicine 2025;19(1):170-173
SMARCA4-deficient non small cell lung cancer (SMARCA4-dNSCLC) has recently garnered increasing attention due to its high malignancy and poor prognosis. The literature suggests that in non small cell lung cancer (NSCLC), the loss of SMARCA4 frequently co-occurs with mutations in KRAS, KEAP1, and STK11 rather than in EGFR, ALK, and ROS1. Herein, we present the first documented case of SMARCA4-dNSCLC accompanied with rare mutations of EGFR exon 20 S768I and exon 18 G719X. The patient achieved partial response with afatinib for 17 months. Our case highlights the importance of EGFR mutations in the precision targeted treatment of SMARCA4-dNSCLC.
Humans
;
Afatinib/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
DNA Helicases/genetics*
;
ErbB Receptors/genetics*
;
Lung Neoplasms/pathology*
;
Mutation
;
Nuclear Proteins/genetics*
;
Transcription Factors/genetics*
6.Identification of HMA gene family and response to cadmium stress in <i>Ophiopogon japonicasi>.
Zhihui WANG ; Erli NIU ; Yuanliang GAO ; Qian ZHU ; Zihong YE ; Xiaoping YU ; Qian ZHAO ; Jun HUANG
Chinese Journal of Biotechnology 2025;41(2):771-790
Soil cadmium (Cd) pollution is one of the major environmental problems globally. <i>Ophiopogon japonicusi>, a multifunctional plant extensively used in traditional Chinese medicine, has demonstrated potential in environmental remediation. This study investigated the Cd accumulation pattern of <i>Oi>. <i>japonicusi> under cadmium stress and identified the heavy metal ATPase (HMA) family members in this plant. Our results demonstrated that <i>Oi>. <i>japonicusi> exhibited a Cd enrichment factor (EF) of 2.75, demonstrating strong potential for soil Cd pollution remediation. Nine heavy metal ATPase (HMA) members of P1B-ATPases were successfully identified from the transcriptome data of <i>Oi>. <i>japonicusi>, with OjHMA1-OjHMA6 classified as the Zn/Co/Cd/Pb-ATPases and OjHMA7-OjHMA9 as the Cu/Ag-ATPases. The expression levels of <i>OjHMA1i>, <i>OjHMA2i>, <i>OjHMA3i>, and <i>OjHMA7i> were significantly up-regulated under Cd stress, highlighting their crucial roles in cadmium ion absorption and transport. The topological analysis revealed that these proteins possessed characteristic transmembrane (TM) segments of the family, along with functional A, P, and N domains involved in regulating ion absorption and release. Metal ion-binding sites (M4, M5, and M6) existed on the TM segments. Based on the number of transmembrane domains and the residues at metal ion-binding sites, the plant HMA family members were categorized into three subgroups: P1B-1 ATPases, P1B-2 ATPases, and P1B-4 ATPases. Specifically, the P1B-1 ATPase subgroup included the motifs TM4(CPC), TM5(YN[X]4P), and TM6(M[XX]SS); the P1B-2 ATPase subgroup featured the motifs TM4(CPC), TM5(K), and TM6(DKTGT); the P1B-4 ATPase subgroup contained the motifs TM4(SPC) and TM6(HE[X]GT), all of which were critical for protein functions. Molecular docking results revealed the importance of conserved sequences such as CPC/SPC, DKTGT, and HE[X]GT in metal ion coordination and stabilization. These findings provide potential molecular targets for enhancing Cd uptake and tolerance of <i>Oi>. <i>japonicusi> by genetic engineering and lay a theoretical foundation for developing new cultivars with high Cd accumulation capacity.
Cadmium/metabolism*
;
Adenosine Triphosphatases/metabolism*
;
Ophiopogon/drug effects*
;
Soil Pollutants/toxicity*
;
Plant Proteins/metabolism*
;
Stress, Physiological
;
Multigene Family
;
Gene Expression Regulation, Plant
7.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces <i>VIM5i> expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus <i>Curtovirusi>, family <i>Geminiviridaei>) induces <i>VARIANT IN METHYLATION 5i> (<i>VIM5i>) expression in <i>Arabidopsisi> leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for <i>VIM5i> induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type <i>Nicotiana benthamianai> plants to analyze the VSR and the <i>VIM5i>-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed <i>GFPi> silencing in 16c-GFP transgenic <i>Ni>. <i>benthamianai> leaves. The minimal N-terminal fragment (amino acids 1-104) induced <i>VIM5i> expression upon co-infiltration, while C-terminal truncations lacked <i>VIM5i>-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces <i>VIM5i> expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
9.Prokaryotic expression and helicase activity analysis of PDCoV NSP13.
Lihan TAO ; Chengcheng WU ; Cui LIN ; Zhaofeng KANG ; Jianzhen HUANG
Chinese Journal of Biotechnology 2024;40(12):4573-4585
Porcine deltacoronavirus (PDCoV) is a major pathogen causing fatal diarrhea in suckling piglets, and there is currently a lack of effective vaccines and drugs to prevent and control the virus. The nonstructural protein 13 (NSP13) serves as a virus-coded helicase and is considered to be a crucial target for antiviral drugs, making it imperative to investigate the helicase activity of NSP13. In this study, the <i>NSP13i> gene of PDCoV was synthesized and integrated into the prokaryotic expression vector pET-28a to construct the recombinant plasmid pET-28a-NSP13. NSP13 was successfully expressed in BL21 (DE3) and subsequently purified. The study also verified the helicase activity of the purified NSP13 and explored the factors that influence this activity. The results indicated that NSP13 from PDCoV was effectively expressed in the prokaryotic system and exhibited helicase activity, capable of unwinding double-stranded DNA with a tail at the 5' end. Additionally, NSP13 demonstrated an annealing function by promoting the complementary pairing of single-stranded nucleotide chains to form double strands. The helicase activity of NSP13 was affected by metal ions, but Mg2+concentrations in the range of 0.5-6.0 mmol/L had no significant effect on helicase activity of NSP13. When the solution pH was in the range of 4-9, there was no difference in helicase activity. ATP concentrations in the range of 0.25-6.00 mmol/L had a weak effect on helicase activity, and NSP13 concentration ≥80 nmol/L inhibited the helicase activity. We obtained the NSP13 of PDCoV and investigated its helicase activity. These findings provided a theoretical foundation for the further research on the regulatory mechanism of NSP13 in PDCoV replication and the development of anti-coronaviral drugs.
Viral Nonstructural Proteins/metabolism*
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Swine
;
Animals
;
DNA Helicases/metabolism*
;
Genetic Vectors/metabolism*
10.Estrogen upregulates DNA2 expression through the PI3K-AKT pathway in endometrial carcinoma.
Xinyan WANG ; Xiuling XU ; Ting ZHANG ; Yang JIN ; Sheng XU ; Lifeng CHEN ; Yucheng LAI ; Ling ZHANG ; Ruolang PAN ; Yan YU
Journal of Zhejiang University. Science. B 2023;24(3):262-268
Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011). Type I accounts for approximately 80% of cases, of which the majority are endometrioid carcinomas, and the remaining are mucinous adenocarcinomas (Setiawan et al., 2013). It is generally recognized that long-term stimulation by high estrogen levels with the lack of progesterone antagonism is the most important risk factor; meanwhile, there is no definite conclusion on the specific pathogenesis. The incidence of endometrial cancer has been on the rise during the past two decades (Constantine et al., 2019; Gao et al., 2022; Luo et al., 2022). Moreover, the development of assisted reproductive technology and antiprogestin therapy following breast cancer surgery has elevated the risk of developing type I endometrial cancer to a certain extent (Vassard et al., 2019). Therefore, investigating the influence of estrogen in type I endometrial cancer may provide novel concepts for risk assessment and adjuvant therapy, and at the same time, provide a basis for research on new drugs to treat endometrial cancer.
Female
;
Humans
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinases
;
Endometrial Neoplasms
;
Estrogens
;
Breast Neoplasms
;
DNA Helicases

Result Analysis
Print
Save
E-mail