1.Chinese expert consensus on drug interaction management of poly ADP-ribose polymerase inhibitors.
Chinese Journal of Oncology 2023;45(7):584-593
Poly ADP-ribose polymerase inhibitors (PARPi), which approved in recent years, are recommended for ovarian cancer, breast cancer, pancreatic cancer, prostate cancer and other cancers by The National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) guidelines. Because most of PARPi are metabolized by cytochrome P450 enzyme system, there are extensive interactions with other drugs commonly used in cancer patients. By setting up a consensus working group including pharmaceutical experts, clinical experts and methodology experts, this paper forms a consensus according to the following steps: determine clinical problems, data retrieval and evaluation, Delphi method to form recommendations, finally formation expert opinion on PARPi interaction management. This paper will provide practical reference for clinical medical staff.
Male
;
Female
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Consensus
;
Ovarian Neoplasms/drug therapy*
;
Drug Interactions
;
Adenosine Diphosphate Ribose/therapeutic use*
2.Effects of arsenic and its main metabolites on A549 cell apoptosis and the expression of pro-apoptotic genes Bad and Bik.
Qian ZHOU ; Jin Yao YIN ; Jing Wen TAN ; Shu Ting LI ; Cheng Lan JIANG ; Yue Feng HE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(9):661-667
Objective: To investigate the effect of arsenic and its main metabolites on the apoptosis of human lung adenocarcinoma cell line A549 and the expression of pro-apoptotic genes Bad and Bik. Methods: In October 2020, A549 cells were recovered and cultured, and the cell viability was detected by the cell counting reagent CCK-8 to determine the concentration and time of sodium arsenite exposure to A549. The study was divided into NaAsO(2) exposure groups and metobol: le expoure groups: the metabolite comparison groups were subdivided into the control group, the monomethylarsinic acid exposure group (60 μmol/L) , and the dimethylarsinic acid exposure group (60 μmol/L) ; sodium arsenite dose groups were subdivided into 4 groups: control group (0) , 20, 40, 60 μmol/L sodium arsenite NaAsO(2). Hoechst 33342/propidium iodide double staining (Ho/PI) was used to observe cell apoptosis and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression levels of Bad and Bik mRNA in cells after exposure. Western blotting was used to detect the protein expressions of Bad, P-Bad-S112, Bik, cleaved Bik and downstream proteins poly ADP-ribose polymerase PARP1 and cytochrome C (Cyt-C) , using spectrophotometry to detect the activity changes of caspase 3, 6, 8, 9. Results: Compared with the control group, the proportion of apoptotic cells in the 20, 40, and 60 μmol/L NaAsO(2) dose groups increased significantly (P<0.01) , and the expression levels of Bad, Bik mRNA, the protein expression levels of Bad, P-Bad-S112, Bik, cleaved Bik, PARP1, Cyt-C were increased (all P<0.05) , and the activities of Caspase 3, 6, 8, and 9 were significantly increased with significantly differences (P<0.05) . Compared with the control group, the expression level of Bad mRNA in the DMA exposure group (1.439±0.173) was increased with a significant difference (P=0.024) , but there was no significant difference in the expression level of Bik mRNA (P=0.788) . There was no significant differences in the expression levels of Bad and Bik mRNA in the poison groups (P=0.085, 0.063) . Compared with the control group, the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to MMA were 0.696±0.023, 0.707±0.014, 0.907±0.031, 1.032±0.016, and there was no significant difference between the two groups (P=0.469, 0.669, 0.859, 0.771) ; the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to DMA were 0.698±0.030, 0.705±0.022, 0.908±0.015, 1.029±0.010, and there was no difference between the two groups (P=0.479, 0.636, 0.803, 0.984) . Conclusion: Sodium arsenite induces the overexpression of Bad and Bik proteins, initiates the negative feedback regulation of phosphorylated Bad and the degradation of Bik, activates the downstream proteins PARP1, Cyt-C and Caspase pathways, and mediates the apoptosis of A549 cells.
A549 Cells
;
Adenosine Diphosphate Ribose/pharmacology*
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Arsenic
;
Arsenites
;
Cacodylic Acid/pharmacology*
;
Caspase 3
;
Caspases/pharmacology*
;
Cytochromes c/pharmacology*
;
Humans
;
Mitochondrial Proteins/pharmacology*
;
Poisons
;
Propidium/pharmacology*
;
RNA, Messenger
;
Sincalide/pharmacology*
;
Sodium Compounds
;
bcl-Associated Death Protein/metabolism*