1.Adar3 promotes macrophage M2 polarization and alleviates viral myocarditis by activating the Wnt/β-catenin signaling pathway.
Mengying ZHANG ; Zhi LI ; Weiya PEI ; Shujun WAN ; Xueqin LI ; Kun LYU ; Xiaolong ZHU
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):769-777
Objective To investigate the role and mechanism of RNA-Specific adenosine deaminase 3 (Adar3) in regulating macrophage polarization during Coxsackievirus B3(CVB3)-induced viral myocarditis (VM). Methods Bone marrow-derived macrophages (BMDM) from mice were cultured in vitro and induced into M1/M2 macrophages using interferon-gamma (IFN-γ)/lipopolysaccharide (LPS) or interleukin 4 (IL-4), respectively. The mRNA expression levels of Adar1, Adar2, and Adar3 in each group of cells were assessed by real-time quantitative PCR (qRT-PCR). Specific siRNAs targeting the Adar3 gene were designed, synthesized, and transiently transfected into M2 macrophages. The mRNA levels of M2 polarization-related marker genes-including arginase 1 (Arg1), chitinase 3-like molecule 3 (YM1/Chi3l3), and resistin-like molecule alpha (RELMα/FIZZ1)-were detected by qRT-PCR. RNA sequencing was performed to analyze the signaling pathways affected by Adar3. The expression levels of Wnt/β-catenin signaling pathway were further validated using qRT-PCR and Western blot. The adeno-associated virus overexpressing Adar3 was designed, synthesized, and injected into mice via tail vein. Three weeks later, a myocarditis mouse model was established. After an additional week, the phenotype and function of cardiac macrophages, as well as multiple indicators of VM (including echocardiography, body weight, histopathology and serology) were examined. Additionally, the protein levels of the Wnt/β-catenin signaling pathway were assessed. Results Compared to M0-type macrophages, the expression level of Adar3 was significantly increased in M2-type macrophages. After transfection of Adar3 siRNA, the mRNA levels of Arg1, YM1 and FIZZ1 in M2 macrophages were downregulated. RNA sequencing revealed 149 upregulated genes and 349 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and subsequent validation experiments indicated that Adar3 modulated the Wnt/β-catenin signaling pathway. In vivo experiments demonstrated that Adar3 overexpression alleviated the cardiac dysfunction of VM mice. The proportion of M1 macrophages in the heart decreased, while the proportion of M2 macrophages increased. At the same time, the Adar3 overexpression activated the Wnt/β-catenin signaling pathway. Conclusion Adar3 promotes macrophage polarization toward the M2 phenotype by activating the Wnt/β-catenin signaling pathway, thereby alleviating VM.
Animals
;
Adenosine Deaminase/metabolism*
;
Macrophages/immunology*
;
Wnt Signaling Pathway/genetics*
;
Myocarditis/immunology*
;
Mice
;
Coxsackievirus Infections/metabolism*
;
Male
;
Mice, Inbred BALB C
;
Enterovirus B, Human/physiology*
;
beta Catenin/genetics*
2.ADAR1 Regulates the ERK/c-FOS/MMP-9 Pathway to Drive the Proliferation and Migration of Non-small Cell Lung Cancer Cells.
Li ZHANG ; Xue PAN ; Wenqing YAN ; Shuilian ZHANG ; Chiyu MA ; Chenpeng LI ; Kexin ZHU ; Nijia LI ; Zizhong YOU ; Xueying ZHONG ; Zhi XIE ; Zhiyi LV ; Weibang GUO ; Yu CHEN ; Danxia LU ; Xuchao ZHANG
Chinese Journal of Lung Cancer 2025;28(9):647-657
BACKGROUND:
Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) binds to double-stranded RNA and catalyzes the deamination of adenosine (A) to inosine (I). The functional mechanism of ADAR1 in non-small cell lung cancer (NSCLC) remains incompletely understood. This study aimed to investigate the prognostic significance of ADAR1 in NSCLC and to elucidate its potential role in regulating tumor cell proliferation and migration.
METHODS:
Data from The Cancer Genome Atlas (TCGA) and cBioPortal were analyzed to assess the correlation between high ADAR1 expression and clinicopathological features as well as prognosis in lung cancer. We performed Western blot (WB), cell proliferation assays, Transwell invasion/migration assays, and nude mouse xenograft modeling to examine the phenotypic changes and molecular mechanisms induced by ADAR1 knockdown. Furthermore, the ADAR1 p150 overexpression model was utilized to validate the proposed mechanism.
RESULTS:
ADAR1 expression was significantly elevated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared with adjacent non-tumor tissues (LUAD: P=3.70×10-15, LUSC: P=0.016). High ADAR1 expression was associated with poor prognosis (LUAD: P=2.03×10-2, LUSC: P=2.81×10-2) and distant metastasis (P=0.003). Gene Set Enrichment Analysis (GSEA) indicated that elevated ADAR1 was associated with mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway activation, matrix metalloproteinase-9 (MMP-9) expression, and cell adhesion. ADAR1 and MMP-9 levels showed a strongly positive correlation (P=6.45×10-34) in 10 lung cancer cell lines, highest in H1581. Knockdown of ADAR1 in H1581 cells induced a rounded cellular morphology with reduced pseudopodia. Concomitantly, it suppressed cell proliferation, invasion, migration, and in vivo tumorigenesis. It also suppressed ERK phosphorylation and downregulated cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-FOS), MMP-9, N-cadherin, and Vimentin. Conversely, ADAR1 p150 overexpression in PC9 cells enhanced ERK phosphorylation and increased c-FOS and MMP-9 expression.
CONCLUSIONS
High ADAR1 expression is closely associated with poor prognosis and distant metastasis in NSCLC patients. Mechanistically, ADAR1 may promote proliferation, invasion, migration, and tumorigenesis in lung cancer cells via the ERK/c-FOS/MMP-9 axis.
Humans
;
Lung Neoplasms/physiopathology*
;
Adenosine Deaminase/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Cell Proliferation
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Cell Movement
;
Animals
;
Mice
;
RNA-Binding Proteins/genetics*
;
Female
;
Male
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-fos/genetics*
;
Middle Aged
;
MAP Kinase Signaling System
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
Extracellular Signal-Regulated MAP Kinases/genetics*
3.Analysis of a Chinese pedigree affected with dyschromatosis symmetrica hereditaria due to a novel variant of ADAR gene.
Ke YANG ; Qiaofang HOU ; Yuwei ZHANG ; Guiyu LOU ; Na QI ; Bing KANG ; Bing ZHANG ; Shixiu LIAO
Chinese Journal of Medical Genetics 2022;39(1):64-67
OBJECTIVE:
To explore the genetic basis for a Chinese pedigree affected with dyschromatosis symmetrica hereditaria (DSH).
METHODS:
PCR and Sanger sequencing were carried out for the proband, and suspected variant was validated by Sanger sequencing in the pedigree.
RESULTS:
The proband was found to harbor a novel variant of c.1352delA (p.N451Mfs*13) of the ADAR (NM_001111) gene. The same variant was found in her affected mother and sister, but not in her unaffected father, uncle, and 100 healthy individual.
CONCLUSION
The novel variant of the ADAR gene probably underlay the pathogenesis of DSH in this pedigree.
Adenosine Deaminase/genetics*
;
China
;
Female
;
Humans
;
Mutation
;
Pedigree
;
Pigmentation Disorders/congenital*
;
RNA-Binding Proteins/genetics*
4.Analysis of ADAR gene variant in a Chinese pedigree affected with dyschromatosis symmetrica hereditaria.
Changyin WANG ; Siman XIA ; Zhengjun CUI ; Xinjian LIU ; Kun QIAN ; Qian LI ; Xin ZONG
Chinese Journal of Medical Genetics 2022;39(2):202-204
OBJECTIVE:
To analyze the clinical features and genetic basis for a Chinese pedigree affected with hereditary dyschromatosis symmetrica hereditaria (DSH).
METHODS:
Peripheral blood samples of the proband and his mother were collected and subjected to PCR and Sanger sequencing.
RESULTS:
The patient has conformed to the typical pattern of DSH and manifested with hyperpigmentation, hypo- and hyperpigmentation spots on the back of hands, feet and face. Sanger sequencing confirmed that the proband and his mother have both harbored heterozygous splicing variant c.2762+1G>T in exon 9 of the ADAR gene, which was unreported previously. The same variant was not detected among 100 healthy controls. According to the guidelines of the American College of Medical Genetics and Genomics, the variant was predicted to be pathogenic (PVS1+PM2+PP4).
CONCLUSION
The c.2762+1G>T variant of the ADAR gene probably underlay the DSH in this pedigree. Above finding has enriched the spectrum of ADAR gene mutations.
Adenosine Deaminase/genetics*
;
China
;
Humans
;
Mutation
;
Pedigree
;
Pigmentation Disorders/congenital*
;
RNA-Binding Proteins/genetics*
5.Analysis of ADAR1 gene variants in two pedigrees affected with dyschromatosis symmetrica hereditaria.
Qian MA ; Jinlin WU ; Xiangdong KONG
Chinese Journal of Medical Genetics 2020;37(11):1233-1235
OBJECTIVE:
To detect variants of ADAR1 gene in two Chinese pedigrees affected with dyschromatosis symmetrica hereditaria (DSH).
METHODS:
Clinical data and peripheral blood samples of the pedigrees were collected. All exons of the ADAR1 gene were amplified by PCR and subjected to Sanger sequencing. Suspected pathogenic variants were validated among other members of the pedigrees and 100 unrelated healthy controls.
RESULTS:
For pedigree 1, Sanger sequencing has identified a heterozygous missense variant c.3002G>C (p.Asp968His) in exon 11 of the ADAR1 gene in the proband and his father. For pedigree 2, a novel nonsense variant c.3145C>T (p.Gln1049Ter) was identified in exon 12 of the ADAR1 gene in the proband and his son, which were previously unreported and absent among the healthy controls.
CONCLUSION
The c.3002G>C (p.Asp968His) and c.3145C>T (p.Gln1049Ter)variants of the ADAR1 gene probably underlay the DSH in the two pedigrees.
Adenosine Deaminase/genetics*
;
Humans
;
Mutation
;
Pedigree
;
Pigmentation Disorders/genetics*
;
RNA-Binding Proteins/genetics*
6.Analysis of ADAR gene mutations in two pedigrees affected with dyschromatosis symmetrica hereditaria.
Zhenhua ZHAO ; Conghui WANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2019;36(6):574-576
OBJECTIVE:
To detect mutations of ADAR gene in two pedigrees affected with dyschromatosis symmetrica hereditaria (DSH).
METHODS:
Potential mutations of the ADAR gene were analyzed by Sanger sequencing of the probands from both pedigrees. Suspected mutations were validated by Sanger sequencing of other patients from both pedigrees as well as unrelated healthy individuals.
RESULTS:
A heterozygous nonsense mutation c.1325C>G (p.Ser442Ter) and a novel nonsense mutation c.1498C>T (p.Gln500Ter) were respectively identified in the ADAR gene among all patients from the two pedigrees but not among 200 healthy individuals.
CONCLUSION
Mutations of the ADAR gene probably underlie the DSH in the two pedigrees. Above findings have enriched the spectrum of ADAR gene mutation.
Adenosine Deaminase
;
Humans
;
Mutation
;
Pedigree
;
Pigmentation Disorders
;
congenital
;
genetics
;
RNA-Binding Proteins
7.Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants.
Lei YANG ; Xiaohui ZHANG ; Liren WANG ; Shuming YIN ; Biyun ZHU ; Ling XIE ; Qiuhui DUAN ; Huiqiong HU ; Rui ZHENG ; Yu WEI ; Liangyue PENG ; Honghui HAN ; Jiqin ZHANG ; Wenjuan QIU ; Hongquan GENG ; Stefan SIWKO ; Xueli ZHANG ; Mingyao LIU ; Dali LI
Protein & Cell 2018;9(9):814-819
8.Differential Diagnosis of Two Chinese Families with Dyschromatoses by Targeted Gene Sequencing.
Jia-Wei LIU ; null ; Jun SUN ; Sergio VANO-GALVAN ; Feng-Xia LIU ; Xiu-Xiu WEI ; Dong-Lai MA
Chinese Medical Journal 2016;129(1):33-38
BACKGROUNDThe dyschromatoses are a group of disorders characterized by simultaneous hyperpigmented macules together with hypopigmented macules. Dyschromatosis universalis hereditaria (DUH) and dyschromatosis symmetrica hereditaria are two major types. While clinical and histological presentations are similar in these two diseases, genetic diagnosis is critical in the differential diagnosis of these entities.
METHODSThree patients initially diagnosed with DUH were included. The gene test was carried out by targeted gene sequencing. All mutations detected on ADAR1 and ABCB6 genes were analyzed according to the frequency in control database, the mutation types, and the published evidence to determine the pathogenicity.
RESULTSFamily pedigree and clinical presentations were reported in 3 patients from two Chinese families. All patients have prominent cutaneous dyschromatoses involving the whole body without systemic complications. Different pathogenic genes in these patients with similar phenotype were identified: One novel mutation on ADAR1 (c. 1325C>G) and one recurrent mutation in ABCB6 (c. 1270T>C), which successfully distinguished two diseases with the similar phenotype.
CONCLUSIONTargeted gene sequencing is an effective tool for genetic diagnosis in pigmentary skin diseases.
ATP-Binding Cassette Transporters ; genetics ; Adenosine Deaminase ; genetics ; Adolescent ; Asian Continental Ancestry Group ; Child ; Diagnosis, Differential ; Female ; Genetic Predisposition to Disease ; genetics ; Humans ; Male ; Pedigree ; Pigmentation Disorders ; congenital ; diagnosis ; genetics ; RNA-Binding Proteins ; genetics ; Skin Diseases, Genetic ; diagnosis ; genetics
9.ADAR1 Knockout Inhibits Notch1-induced T-ALL in Mice.
Hui-Er GAO ; Lu-Yun PENG ; Xin YANG ; Ying-Chi ZHANG ; Tian-Yuan HU ; Jing XU ; Wei-Ping YUAN ; Tao CHENG ; Ying-Dai GAO
Journal of Experimental Hematology 2016;24(3):643-648
OBJECTIVETo investigate the effect of ADAR1 on the occurrence and development of mouse T cell acute lymphoblastic leukemia (T-ALL).
METHODSLck-Cre; ADAR1lox/lox mice were generated through interbreeding. The lineage-cells of Lck-Cre; ADAR1lox/lox mice and the control were enriched respectively by the means of MACS, and the lin- cells were transfected with retrovirus carrying MSCV-ICN1-IRES-GFP fusion gene. Then the transfection efficiency was detected by the means of FACS, and the same number of GFP+ cells were transplanted into lethally irradiated recipient mice to observe the survival of mice in 2 recipient group after transplantation.
RESULTST cell-specific knockout ADAR1 mice were generated, and Notch1-induced T-ALL mouse model was established successfully. The leukemia with T-ALL characteristics occured in the mice of control group, but did not in the ADAR1 kmockout mice after transplantation.
CONCLUSIONSADAR1 plays a key role in the incidence and development of Notch1-induced T-ALL.
Adenosine Deaminase ; genetics ; Animals ; Disease Models, Animal ; Mice ; Mice, Knockout ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma ; genetics ; Receptor, Notch1 ; genetics ; T-Lymphocytes
10.Two novel mutations of the ADAR1 gene associated with dyschromatosis symmetrica hereditaria.
Yiping LIU ; Zhengzhong ZHANG ; Yunzhu MU ; Fen XIONG ; Xing CHEN ; Hao YANG ; Ping YANG ; Linli LIU
Chinese Journal of Medical Genetics 2016;33(2):173-176
OBJECTIVETo identify potential mutation of the ADAR1 gene in a Chinese family and a sporadic case affected with dyschromatosis symmetrica hereditaria(DSH).
METHODSClinical data and peripheral blood samples from the pedigree and the sporadic patient were collected. Following extraction of genomic DNA, all 15 exons and exon-intron flanking sequences of the ADAR1 gene were amplified by polymerase chain reaction and subjected to direct sequencing.
RESULTSA novel frame-shift mutation c.2638delG (p.Asp880ThrfsX15) from the patients of the pedigree was detected in exon 8 of the ADAR1 gene. And a novel nonsense mutation c.2867C>A (p.Ser956X) was detected in exon 10 of the ADAR1 gene from the sporadic case. Neither mutation was identified among the unaffected family members nor 100 unrelated healthy controls.
CONCLUSIONThe frame-shift mutation c.2638delG (p.Asp880ThrfsX15) and the nonsense mutation c.2867C>A (p.Ser956X) in the ADAR1 gene probably underlie the DSH in our patients.
Adenosine Deaminase ; genetics ; Adult ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; China ; Codon, Nonsense ; Exons ; Female ; Frameshift Mutation ; Humans ; Male ; Molecular Sequence Data ; Pedigree ; Pigmentation Disorders ; congenital ; enzymology ; genetics ; RNA-Binding Proteins ; genetics

Result Analysis
Print
Save
E-mail