1.Buyang Huanwu Decoction promotes angiogenesis after oxygen-glucose deprivation/reoxygenation injury of bEnd.3 cells by regulating YAP1/HIF-1α signaling pathway via caveolin-1.
Bo-Wei CHEN ; Yin OUYANG ; Fan-Zuo ZENG ; Ying-Fei LIU ; Feng-Ming TIAN ; Ya-Qian XU ; Jian YI ; Bai-Yan LIU
China Journal of Chinese Materia Medica 2025;50(14):3847-3856
This study aims to explore the mechanism of Buyang Huanwu Decoction(BHD) in promoting angiogenesis after oxygen-glucose deprivation/reoxygenation(OGD/R) of mouse brain microvascular endothelial cell line(brain-derived Endothelial cells.3, bEnd.3) based on the caveolin-1(Cav1)/Yes-associated protein 1(YAP1)/hypoxia-inducible factor-1α(HIF-1α) signaling pathway. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to analyze the blood components of BHD. The cell counting kit-8(CCK-8) method was used to detect the optimal intervention concentration of drug-containing serum of BHD after OGD/R injury of bEnd.3. The lentiviral transfection method was used to construct a Cav1 silent stable strain, and Western blot and polymerase chain reaction(PCR) methods were used to verify the silencing efficiency. The control bEnd.3 cells were divided into a normal group(sh-NC control group), an OGD/R model + blank serum group(sh-NC OGD/R group), and an OGD/R model + drug-containing serum group(sh-NC BHD group). Cav1 silent cells were divided into an OGD/R model + blank serum group(sh-Cav1 OGD/R group) and an OGD/R model + drug-containing serum group(sh-Cav1 BHD group). The cell survival rate was detected by the CCK-8 method. The cell migration ability was detected by a cell migration assay. The lumen formation ability was detected by an angiogenesis assay. The apoptosis rate was detected by flow cytometry, and the expression of YAP1/HIF-1α signaling pathway-related proteins in each group was detected by Western blot. Finally, co-immunoprecipitation was used to verify the interaction between YAP1 and HIF-1α. The results showed astragaloside Ⅳ, formononetin, ferulic acid, and albiflorin in BHD can all enter the blood. The drug-containing serum of BHD at a mass fraction of 10% may be the optimal intervention concentration for OGD/R-induced injury of bEnd.3 cells. Compared with the sh-NC control group, the sh-NC OGD/R group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, significantly increased cell apoptotic rate, significantly lowered phosphorylation level of YAP1 at S127 site, and significantly elevated nuclear displacement level of YAP1 and protein expression of HIF-1α, vascular endothelial growth factor(VEGF), and vascular endothelial growth factor receptor 2(VEGFR2). Compared with the same type of OGD/R group, the sh-NC BHD group and sh-Cav1 BHD group had significantly increased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly decreased cell apoptotic rate, a further decreased phosphorylation level of YAP1 at S127 site, and significantly increased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC OGD/R group, the sh-Cav1 OGD/R group exhibited significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC BHD group, the sh-Cav1 BHD group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at the S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. YAP1 protein was present in the protein complex precipitated by the HIF-1α antibody, and HIF-1α protein was also present in the protein complex precipitated by the YAP1 antibody. The results confirmed that the drug-containing serum of BHD can increase the activity of YAP1/HIF-1α pathway in bEnd.3 cells damaged by OGD/R through Cav1 and promote angiogenesis in vitro.
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Signal Transduction/drug effects*
;
Glucose/metabolism*
;
Caveolin 1/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
YAP-Signaling Proteins
;
Oxygen/metabolism*
;
Endothelial Cells/metabolism*
;
Cell Line
;
Adaptor Proteins, Signal Transducing/genetics*
;
Neovascularization, Physiologic/drug effects*
;
Cell Hypoxia/drug effects*
;
Angiogenesis
2.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
3.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
4.Zheng Gan Decoction inhibits diethylnitrosamine-induced hepatocellular carcinoma in rats by activating the Hippo/YAP signaling pathway.
Tianli SONG ; Yimin WANG ; Tong SUN ; Xu LIU ; Sheng HUANG ; Yun RAN
Journal of Southern Medical University 2025;45(4):799-809
OBJECTIVES:
To investigate the inhibitory effect of Zheng GanDecoction (ZGF) on tumor progression in a rat model of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) and explore the possible mechanism.
METHODS:
Seventy SD rats were subjected to regular intraperitoneal injections of DEN (50 mg/kg) for 12 weeks to induce HCC tumorigenesis, with another 10 rats receiving saline injections as the normal control. After successful modeling, the rats were randomized into 5 groups (n=10) for daily treatment with distilled water ( model group), Huaier Granules (4 g/kg; positive control group), or ZGF at low, medium, and high doses (2, 4, and 8 g/kg, respectively) via gavage for 17 weeks. Body weight changes of the rats were monitored, and after completion of the treatments, the rats were euthanized for measurement of liver, spleen and thymus indices and morphological and histopathological examinations of the liver tissues using HE staining. The expressions of YAP, p-YAP, MST1, LATS1 and p-LATS1 in the liver tissues were detected using immunohistochemistry and Western blotting.
RESULTS:
Compared with the normal control rats, the rat models with DEN-induced HCC exhibited much poorer general condition with a significantly reduced survival rate, increased body weight and liver and spleen indices, and a lowered thymus index. ZGF treatment obviously reduced liver and spleen indices, increased the thymus index, and improved pathologies of the liver tissues of the rat models. Immunohistochemistry and Western blotting showed a dose-dependent reduction of YAP expression and an increment of p-YAP expression in ZGF-treated rats, which also exhibited significantly upregulated hepatic expressions of MST1, LATS1 and p-LATS1.
CONCLUSIONS
ZGF inhibits DEN-induced HCC in rats by activating the Hippo/YAP pathway via upregulating MST1 and LATS1 expression, which promotes YAP phosphorylation and degradation to suppress proliferation and induce apoptosis of the tumor cells.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Diethylnitrosamine
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Protein Serine-Threonine Kinases/metabolism*
;
Carcinoma, Hepatocellular/drug therapy*
;
YAP-Signaling Proteins
;
Liver Neoplasms/drug therapy*
;
Hippo Signaling Pathway
;
Male
;
Liver Neoplasms, Experimental/metabolism*
;
Transcription Factors/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
5.Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer's Disease Mouse Model Carrying a PSEN1 p.G378E Mutation.
Li RAN ; Lv ZHAN-YUN ; Li YAN-XIN ; Li WEI ; Hao YAN-LEI
Chinese Medical Sciences Journal 2022;37(4):320-330
Objective To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior, glia activation and pro-inflammatory cycokines, and Tau phosphorylation of a new Alzheimer's disease (AD) mouse model carrying a PSEN1 p.G378E mutation.Methods A new AD mouse model carrying PSEN1 p.G378E mutation was built based on our previously found AD family which might be ascribed to the PSEN1 mutation, and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (PSEN1G378E/WT; Tyrobp+/-) and the homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/-). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed, the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau), and ELISA to measure the levels of pro-inflammatory cytokines. Results Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in PSEN1G378E mutation mouse model prevented the deterioration of learning behavior, decreased the numbers of microglia and astrocytes, and the levels of interleukin-6, interleukin-1β and tumor necrosis factor-α in the hippocampus (all P < 0.05). The ratios of AT8/Tau5, PHF1/Tau5, pT181/Tau5, pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/- mice) compared with PSEN1G378E/G378E mice (all P < 0.05). Conclusions TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However, the relationship between neuroinflammation processes involving microglia and astrocyte activation, and release of pro-inflammatory cytokines, and p-Tau pathology needs further study.
Mice
;
Animals
;
Alzheimer Disease/genetics*
;
Neuroinflammatory Diseases
;
Hippocampus/pathology*
;
Mutation
;
Cytokines/pharmacology*
;
Disease Models, Animal
;
tau Proteins/pharmacology*
;
Amyloid beta-Peptides/metabolism*
;
Adaptor Proteins, Signal Transducing/pharmacology*
6.NLRP3 inflammasome mediates angiotension II-induced expression of inflammatory factor interleukin-1β in human umbilical vein endothelial cells.
Ren-Qiang YANG ; Ling HUANG ; Xiao-Xin MA ; Si-Yi JIN ; Dan WANG ; Xu LI
Journal of Southern Medical University 2016;36(6):790-795
OBJECTIVETo investigate the effect of angiotension II (AngII) on the activation of NLRP3 inflammasome and the expression of interleukin-1β (IL-1β) in human umbilical vein endothelial cells (HUVECs).
METHODSHUVECs cultured in vitro were treated with different concentrations of AngII for varying lengths of time to determine the optimal concentration and time for AngII exposure. To test the impact of different agents on the effect of AngII exposure, HUVECs were pretreated with AngII receptor blocker losartan, NAD(P)H inhibitor DPI and H(2)O(2) scavenger CAT, caspase 1 inhibitor YVAD, or NLRP3 siRNA for silencing NLRP3, and the protein levels of NOX4, NLRP3, caspase-1 and IL-1β in HUVECs were analyzed by Western blotting.
RESULTSAngII treatment at the optimal concentration (10(-9) mol/L) for 12 h significantly increased the protein levels of NOX4, NLRP3, caspase1 and IL-1β in HUVECs. Pretreatment with losartan, DPI, CAT, YVAD, or NLRP3 siRNA all attenuated the effects of AngII on the cells.
CONCLUSIONAngII can induce vascular inflammation by promoting the production of reactive oxygen species and activating NLRP3 inflammasome to increase the protein expression of IL-1β in HUVECs.
Adaptor Proteins, Signal Transducing ; pharmacology ; Angiotensin II ; pharmacology ; Blotting, Western ; Carrier Proteins ; metabolism ; Caspase 1 ; metabolism ; Human Umbilical Vein Endothelial Cells ; metabolism ; Humans ; Hydrogen Peroxide ; Inflammasomes ; metabolism ; Interleukin-1beta ; metabolism ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; RNA, Small Interfering ; Reactive Oxygen Species ; metabolism
7.Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis.
Yu-Liang ZHAO ; Ling ZHANG ; Ying-Ying YANG ; Yi TANG ; Jiao-Jiao ZHOU ; Yu-Ying FENG ; Tian-Lei CUI ; Fang LIU ; Ping FU ;
Chinese Medical Journal 2016;129(9):1100-1107
BACKGROUNDResolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids. The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism.
METHODSBoth in vivo and in vitro studies were conducted. Male BALB/c mice were randomly divided into control group (saline), LPS group (LPS 5 mg/kg), RvD1 group (RvD1 5 μg/kg + LPS 5 mg/kg), and blockage group (Boc-MLP 5 μg/kg + RvD1 5 μg/kg + LPS 5 mg/kg). Boc-MLP is a RvD1 receptor blocker. The mice were intraperitoneally injected with these drugs and recorded for general condition for 48 h, while the blood and kidneys were harvested at 2, 6, 12, 24, and 48 h time points, respectively (n = 6 in each group at each time point). Human proximal tubule epithelial cells (HK-2) were randomly divided into control group (medium only), LPS group (LPS 5 μg/ml), RvD1 group (RvD1 10 ng/ml + LPS 5 μg/ml), and blockage group (Boc-MLP 10 ng/ml + RvD1 10 ng/ml + LPS 5 μg/ml). The cells were harvested for RNA at 2, 4, 6, 12, and 24 h time points, respectively (n = 6 in each group at each time point). Blood creatinine was tested by using an Abbott i-STAT portable blood gas analyzer. Tumor necrosis factor-α (TNF-α) level was detected by ELISA. Kidney pathology was observed under hematoxylin and eosin (HE) staining and transmission electron microscope (TEM). We hired immune-histological staining, Western blotting, and fluorescence quantitative polymerase chain reaction to detect the expression of RvD1 receptor ALX, nuclear factor-kappa B (NF-κB) signaling pathway as well as caspase-3. Kidney apoptosis was evaluated by TUNEL staining.
RESULTSRvD1 receptor ALX was detected on renal tubular epithelials. Kaplan-Meier analysis indicated that RvD1 improved 48 h animal survival (80%) compared with LPS group (40%) and RvD1 blockage group (60%), while RvD1 also ameliorated kidney pathological injury in HE staining and TEM scan. After LPS stimulation, the mRNA expression of toll-like receptor 4, myeloid differentiation factor 88, and TNF-α in both mice kidneys and HK-2 cells were all up-regulated, while RvD1 substantially inhibited the up-regulation of these genes. Western blotting showed that the phosphorylated-IκB/IκB ratio in LPS group was significantly higher than that in the control group, which was inhibited in the RvD1 group. RvD1 could inhibit the up-regulation of cleaved-caspase-3 protein stimulated by LPS, which was prohibited in RvD1 blockage group. RvD1 group also had a lower proportion of apoptotic nuclei in mice kidney by TUNEL staining compared with LPS group.
CONCLUSIONIn LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.
Acute Kidney Injury ; chemically induced ; prevention & control ; Adaptor Proteins, Signal Transducing ; analysis ; Animals ; Apoptosis ; drug effects ; Docosahexaenoic Acids ; pharmacology ; Down-Regulation ; Kidney ; drug effects ; pathology ; Lipopolysaccharides ; pharmacology ; Male ; Mice ; Mice, Inbred BALB C ; NF-kappa B ; antagonists & inhibitors ; Tumor Necrosis Factor-alpha ; analysis
8.Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival.
Yaoting DENG ; Yurika MATSUI ; Wenfei PAN ; Qiu LI ; Zhi-Chun LAI
Protein & Cell 2016;7(5):362-372
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Actins
;
metabolism
;
Adaptor Proteins, Signal Transducing
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Bridged Bicyclo Compounds, Heterocyclic
;
pharmacology
;
Cell Line, Tumor
;
Connective Tissue Growth Factor
;
genetics
;
metabolism
;
pharmacology
;
Cytochalasin D
;
pharmacology
;
Fatty Acids, Nonesterified
;
pharmacology
;
HEK293 Cells
;
Humans
;
Immunohistochemistry
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
Palmitic Acid
;
pharmacology
;
Phosphoproteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Recombinant Proteins
;
genetics
;
metabolism
;
pharmacology
;
Thiazolidines
;
pharmacology
9.Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease.
Pingping SONG ; Shanshan LI ; Hao WU ; Ruize GAO ; Guanhua RAO ; Dongmei WANG ; Ziheng CHEN ; Biao MA ; Hongxia WANG ; Nan SUI ; Haiteng DENG ; Zhuohua ZHANG ; Tieshan TANG ; Zheng TAN ; Zehan HAN ; Tieyuan LU ; Yushan ZHU ; Quan CHEN
Protein & Cell 2016;7(2):114-129
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson's disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.
Adaptor Proteins, Signal Transducing
;
chemistry
;
metabolism
;
Animals
;
HEK293 Cells
;
Heat-Shock Proteins
;
chemistry
;
metabolism
;
Humans
;
Lysine
;
metabolism
;
Mice
;
Neurons
;
metabolism
;
pathology
;
Oxidopamine
;
pharmacology
;
Parkinson Disease
;
metabolism
;
pathology
;
Proteasome Endopeptidase Complex
;
metabolism
;
Protein Stability
;
Proteolysis
;
drug effects
;
Sequestosome-1 Protein
;
Ubiquitin-Protein Ligases
;
metabolism
;
Ubiquitination
;
drug effects
10.Effects of IAA/HRP on the proliferation and apoptosis of SACC-83 cells.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2016;30(1):31-34
OBJECTIVE:
To study the effect of IAA/HRP on the proliferation and apoptosis of human SACC-83 cells in vitro,and its molecular mechanism.
METHOD:
The rate of proliferation inhibition was determined by CCK-8 assay, the apoptosis-related gene Caspase-3 and Livinα mRNA and protein expression levels were measured by real-time PCR and Western blot.
RESULT:
IAA/HRP could inhibit proliferation of SACC-83, which depending on the time and dosage (P < 0.05); can-up-regulate the Caspase-3 mRNA and protein expression levels and reduction of the mRNA and protein of the Livina expression, (both P < 0.05).
CONCLUSION
IAA/HRP can inhibit the proliferation and induce the apoptosis of SACC-83 cells, which may due to its regulation of the expression of Caspase-3 and Livinα mRNA expression.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Humans
;
Indoleacetic Acids
;
pharmacology
;
Inhibitor of Apoptosis Proteins
;
metabolism
;
Neoplasm Proteins
;
metabolism

Result Analysis
Print
Save
E-mail