1.Lactate metabolism and acute kidney injury.
Hui LI ; Qian REN ; Min SHI ; Liang MA ; Ping FU
Chinese Medical Journal 2025;138(8):916-924
Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Humans
;
Acute Kidney Injury/metabolism*
;
Lactic Acid/metabolism*
;
Animals
;
Glycolysis/physiology*
;
Gluconeogenesis/physiology*
;
Kidney/metabolism*
2.Cellular senescence in renal ischemia-reperfusion injury.
Chinese Medical Journal 2025;138(15):1794-1806
Acute kidney injury (AKI) affects more than 20% of hospitalized patients and is a significant contributor to morbidity and mortality, primarily due to ischemia-reperfusion injury (IRI), which is one of the leading causes of AKI. IRI not only exacerbates the immediate impact of AKI but also facilitates its progression to chronic kidney disease (CKD) and, in cases of preexisting CKD, to end-stage renal disease (ESRD). One of the critical pathological processes associated with IRI-AKI is cellular senescence, characterized by an irreversible arrest in the cell cycle, morphological and chromatin organization changes, altered transcriptional and metabolic profiles, and the development of a hypersecretory phenotype known as the senescence-associated secretory phenotype (SASP). The SASP amplifies senescence signals in surrounding normal cells through senescence-related pathways, contributing to tissue damage, fibrosis, and chronic inflammation. This review provides an overview of the defining features of senescent cells and explores the fundamental mechanisms underlying senescent cell generation following IRI. We elucidate the pivotal roles of cellular senescence in the transition from IRI-AKI to chronic kidney injury. Furthermore, we discuss emerging therapies targeting cellular senescence, including senolytics and senomorphics, which have shown promising results in both preclinical and clinical settings. These therapies position cellular senescence as a crucial target for the treatment of IRI in the kidneys. Additionally, advancements in single-cell sequencing technology and artificial intelligence-assisted drug screening are expected to accelerate the discovery of novel senescent biomarkers and synotherapeutics, paving the way for optimized and personalized therapeutic interventions.
Humans
;
Cellular Senescence/physiology*
;
Reperfusion Injury/pathology*
;
Acute Kidney Injury/pathology*
;
Animals
;
Kidney/metabolism*
;
Senescence-Associated Secretory Phenotype/physiology*
3.Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish.
Zejin OU ; Ying LI ; Shi CHEN ; Ziyi WANG ; Meiyi HE ; Zhicheng CHEN ; Shihao TANG ; Xiaojing MENG ; Zhi WANG
Journal of Southern Medical University 2025;45(8):1743-1750
OBJECTIVES:
To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.
METHODS:
Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group. The indicators of kidney injury, inflammatory response, and ferroptosis were examined in the zebrafish, and the changes in expressions of voltage-dependent anion-selective channel protein 1 (VDAC1) and mitochondrial ferritin (FTMT) were detected using Western blotting.
RESULTS:
AKI induced by diquat exhibited a significant dose-effect relationship, and the severity of injury was proportional to the exposure concentration. Diquat also caused marked oxidative stress and inflammatory responses in the zebrafish models. Rhodamine metabolism assay and HE staining revealed significantly declined glomerular filtration function of the zebrafish as diquat exposure concentration increased. Immunofluorescence staining highlighted significant changes in the expressions of ferroptosis markers GPX4 and FTH1 in zebrafish renal tissues following diquat exposure. In diquat-exposed zebrafish, treatment with ferrostatin-1, a ferroptosis inhibitor, obviously upregulated GPX4 and downregulated FTH1 expressions and improved the metabolic rate of glucan labeled with rhodamine B. Diquat exposure significantly upregulated the expression of VDAC1 and FTMT in zebrafish, and the application of ferrostatin-1 and VBIT-12 (a VDAC1 inhibitor) both caused pronounced downregulation of FTMT expression.
CONCLUSIONS
Ferroptosis is a critical mechanism underlying diquat-induced AKI, in which VDAC1 and FTMT play important regulatory roles, suggesting their potential as therapeutic target for AKI caused by diquat.
Animals
;
Zebrafish
;
Ferroptosis/drug effects*
;
Acute Kidney Injury/chemically induced*
;
Diquat/toxicity*
;
Animals, Genetically Modified
;
Voltage-Dependent Anion Channel 1/metabolism*
;
Ferritins/metabolism*
;
Oxidative Stress
4.Exogenous spexin aggravates renal ischemia reperfusion injury and triggers toxicity in healthy kidneys.
Kadri KULUALP ; Meltem Kumaş KULUALP ; Zeynep SEMEN ; Gökçen Güvenç BAYRAM ; Aslı ÇELIK ; Melek Yeşim AK ; Osman YILMAZ
Frontiers of Medicine 2025;19(5):842-854
Renal ischemia-reperfusion injury (IRI) is a major contributor to acute kidney injury (AKI), leading to substantial morbidity and mortality. Spexin (SPX), a 14-amino acid endogenous peptide involved in metabolic regulation and immune modulation, has not yet been studied in the context of chronic treatment and renal IRI. This study evaluated the effects of exogenous SPX on renal function, histopathological changes, and molecular pathways in both IRI-induced injured and healthy kidneys. Twenty-eight male BALB/c mice were divided into four groups: control, SPX, IRI, and SPX+IRI. IRI was induced by 30 minutes of bilateral renal ischemia followed by 6 hours of reperfusion. Renal injury markers, histopathological changes, inflammatory mediators, apoptotic markers, and fibrosis-related proteins were analyzed. SPX significantly exacerbated IRI-induced kidney injury by activating the Wnt/β-catenin signaling pathway and promoting the upregulation of pro-inflammatory, pro-apoptotic, and pro-fibrotic mediators. It is noteworthy that SPX exerted more severe deleterious nephrotoxic effects in the healthy kidney compared to those observed in the IRI-induced injured kidney. These findings indicate that chronic treatment with SPX administration may have intrinsic pro-inflammatory, pro-apoptotic and fibrotic properties, raising concerns about its therapeutic potential. Further research is needed to clarify its physiological role and therapeutic implications in kidney diseases.
Animals
;
Reperfusion Injury/chemically induced*
;
Male
;
Mice, Inbred BALB C
;
Mice
;
Acute Kidney Injury/metabolism*
;
Kidney/blood supply*
;
Peptide Hormones/adverse effects*
;
Apoptosis/drug effects*
;
Wnt Signaling Pathway/drug effects*
;
Disease Models, Animal
5.Peroxisome proliferator activated receptor-α in renal injury: mechanisms and therapeutic implications.
Jing ZHOU ; Li LUO ; Junyu ZHU ; Huaping LIANG ; Shengxiang AO
Chinese Critical Care Medicine 2025;37(7):693-697
Peroxisome proliferator activated receptor-α (PPAR-α) is significantly expressed in various tissues such as the liver, kidney, myocardium, and skeletal muscle, which plays a central role in the development of various diseases by regulating key physiological processes such as energy homeostasis, redox balance, inflammatory response, and ferroptosis. As an important metabolic and excretory organ of the body, renal dysfunction can lead to water and electrolyte imbalance, toxin accumulation, and multiple system complications. The causes of kidney injury are complex and diverse, including acute injury factors (such as ischemia/reperfusion, nephrotoxic drugs, septic shock, and immune glomerulopathy), as well as chronic progressive causes [such as metabolic disease-related nephropathy, hypertensive nephropathy (HN)], and risk factors such as alcohol abuse, obesity, and aging. This review briefly describes the structure, function, and activity regulation mechanism of PPAR-α, systematically elucidates the molecular regulatory network of PPAR-α in the pathological process of kidney injury including acute kidney injury (AKI) such as renal ischemia/reperfusion injury (IRI), drug-induced AKI, sepsis-associated acute kidney injury (SA-AKI), glomerulonephritis, chronic kidney disease (CKD) such as diabetic nephropathy (DN), HN, and other kidney injury, and summarizes the mechanisms related to PPAR-α regulation of kidney injury, including regulation of metabolism, antioxidation, anti-inflammation, anti-fibrosis, and anti-ferroptosis. This review also evaluates PPAR-α's medical value as a novel therapeutic target, and aims to provide theoretical basis for the development of kidney protection strategies based on PPAR-α targeted intervention.
Humans
;
PPAR alpha/metabolism*
;
Acute Kidney Injury/therapy*
;
Animals
;
Kidney/metabolism*
6.Effect of liriodendrin on intestinal flora and ferroptosis pathway in septic rats with acute kidney injury.
Chan GUO ; Lingzhi CUI ; Min ZHOU ; Yuzhen ZHUO ; Lei YANG ; Jiarui LI
Chinese Critical Care Medicine 2025;37(8):728-734
OBJECTIVE:
To investigate the effects of liriodendrin on the intestinal flora and the ferroptosis signaling pathway in renal tissue of rats with sepsis-induced acute kidney injury (AKI).
METHODS:
Thirty male Sprague-Dawley (SD) rats were randomly divided into sham operation group (Sham group), sepsis model induced by cecal ligation and puncture group (CLP group), and liriodendrin intervention group (CLP+LIR group), with 10 rats in each group. The CLP+LIR group was given 0.2 mL of 100 mg/kg liriodendrin by gavage 2 hours before modeling; Sham group and CLP group were given the same volume of normal saline by gavage. The samples were collected after anesthesia 24 hours after modeling. The pathological changes of renal tissue were observed by hematoxylin-eosin (HE) staining. The levels of inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6) were detected by enzyme linked immunosorbent assay (ELISA). The levels of renal function indicators such as creatinine (Cr), and urea nitrogen (UREA) in peripheral blood, and the content of malondialdehyde (MDA) and Fe2+ in renal tissue were detected. Western blotting was used to detect the expressions of nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) in renal tissues. The changes of intestinal flora were detected by 16S rDNA high-throughput sequencing.
RESULTS:
Compared with the Sham group, the CLP group showed significantly enlarged glomeruli, noticeable renal interstitial edema, disorganized kidney tissue, and significantly increased pathological scores. The contents of TNF-α, IL-1β, IL-6, Cr, and UREA in peripheral blood and the levels of MDA and Fe2+ in renal tissue were significantly increased. The protein expressions of Nrf2, GPX4, and HO-1 in renal tissue were significantly down-regulated. The species richness of intestinal flora decreased significantly, and the relative abundances of pathogenic bacteria such as Morganella, Citrobacter, Proteus, Klebsiella, Shigella, Aggregatibacter, and Enterococcus increased significantly, while the relative abundances of beneficial bacteria such as Butyricimonas, Veillonella, Prevotella, Lactobacillus, Bifidobacterium, and Ruminococcus decreased significantly. Compared with the CLP group, CLP+LIR group could significantly reduce the pathological damage of renal tissue, the pathological score significantly decreased (1.80±0.84 vs. 4.20±1.30, P < 0.05), and improve the composition of intestinal flora, reduce the relative abundances of pathogenic bacteria such as Proteus, Klebsiella, Shigella, Aggregatibacter, and Enterococcus, and significantly increase the relative abundances of Lactobacillus, Bifidobacterium, and Ruminococcus, significantly reduce the contents of TNF-α, IL-1β, IL-6, Cr, and UREA in peripheral blood and the levels of MDA and Fe2+ in renal tissue [blood TNF-α (ng/L): 191.31±7.23 vs. 254.90±47.89, blood IL-1β (ng/L): 11.15±4.04 vs. 23.06±1.67, blood IL-6 (ng/L): 163.20±17.83 vs. 267.69±20.92, blood Cr (μmol/L): 24.14±4.25 vs. 41.17±5.43, blood UREA (mmol/L): 4.59±0.90 vs. 8.01±1.07, renal MDA (μmol/g): 9.67±0.46 vs. 16.05±0.88, renal Fe2+ (mg/g): 0.71±0.07 vs. 0.93±0.04, all P < 0.05], and increase the protein expressions of Nrf2, GPX4, and HO-1 (Nrf2/GAPDH: 1.21±0.01 vs. 0.39±0.01, GPX4/GAPDH: 0.74±0.04 vs. 0.48±0.04, HO-1/GAPDH: 0.91±0.01 vs. 0.41±0.02, all P < 0.05).
CONCLUSIONS
Liriodendrin has an obvious protective effect on sepsis-induced AKI. The mechanism may involve regulating the intestinal flora, increasing the activation of the Nrf2/HO-1/GPX4 signaling pathway in renal tissue, and reducing ferroptosis.
Animals
;
Acute Kidney Injury/microbiology*
;
Rats, Sprague-Dawley
;
Sepsis/complications*
;
Male
;
Ferroptosis/drug effects*
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Signal Transduction
;
Kidney/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Protective effect of tumor necrosis factor receptor-associated factor 6 inhibitor C25-140 on acute kidney injury induced by diquat poisoning in mice.
Tingting HUANG ; Guosheng RAO ; Zhijie ZHAO ; Nana XU ; Manhong ZHOU ; Renyang OU
Chinese Critical Care Medicine 2024;36(12):1273-1278
OBJECTIVE:
To investigate the protective effect and mechanism of tumor necrosis factor receptor-associated factor 6 (TRAF6) inhibitor C25-140 on acute kidney injury (AKI) induced by acute diquat (DQ) poisoning in mice.
METHODS:
A total of 80 SPF grade healthy male C57BL/6 mice were randomly divided into the normal control group, DQ model group, C25-140 intervention group, and C25-140 control group, with 20 mice in each group. The DQ poisoning mouse model was established by using one-time intraperitoneal injection of 1 mL of 40 mg/kg DQ solution. The normal control group and C25-140 control group were injected with an equal amount of pure water into the peritoneal cavity. After 4 hours of model establishment, the C25-140 intervention group and C25-140 control group were given intraperitoneal injection of C25-140 5 mg/kg. The normal control group and DQ model group were given equal amounts of pure water, once a day for 7 consecutive days. After 7 days, the mice were anesthetized, eye blood was collected, and renal tissue was collected after sacrifice. The pathological changes of renal tissue were observed under a light microscope and renal tissue structure and mitochondrial changes were observed under transmission electron microscopy. The levels of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of serum interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α). Western blotting was used to detect the protein expression levels of TRAF6, myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in renal tissue. Chemical method was used to determine the content of serum malondialdehyde (MDA) and superoxide dismutase (SOD).
RESULTS:
During the observation period, there were no abnormal behaviors in the normal control group mice. The DQ model group mice gradually showed symptoms such as mental fatigue, fluffy fur, reduced activity, and low food intake after being exposed to the toxin, and severe cases resulted in death. The above symptoms were alleviated in the C25-140 intervention group compared to the DQ model group. Under light microscopy, HE staining showed infiltration of inflammatory cells, glomerulosclerosis, proximal tubular dilation, and vacuolization in the DQ model group, while the inflammatory response was reduced in the C25-140 intervention group compared to the DQ model group. Under transmission electron microscopy, the DQ model group showed relatively high levels of mitochondrial damage, severe swelling, increased volume, matrix dissolution, ridge fracture and loss. The degree of mitochondrial damage in the C25-140 intervention group was reduced compared to the DQ model group. Compared with the normal control group, the levels of serum SCr, BUN, IL-6, IL-1β, TNF-α, and MDA in the DQ model group were significantly increased, while the serum SOD level was significantly decreased. Compared with the DQ model group, the levels of serum SCr, BUN, IL-6, IL-1β, TNF-α, and MDA in the C25-140 intervention group were significantly reduced [SCr (μmol/L): 59.07±13.11 vs. 83.61±20.13, BUN (mmol/L): 25.83±9.95 vs. 40.78±11.53, IL-6 (ng/L): 40.76±7.03 vs. 83.33±21.83, IL-1β (ng/L): 53.87±7.82 vs. 91.74±12.53, TNF-α (ng/L): 102.52±32.13 vs. 150.92±31.75, MDA (μmol/L): 3.57±1.06 vs. 5.75±1.83], and the serum SOD level was significantly increased (kU/g: 162.52±36.13 vs. 122.72±22.13), and the differences were statistically significant (all P < 0.01). Western blotting results showed that the protein expression levels of TRAF6, NF-κB, and MyD88 in the renal tissue of DQ model group mice were significantly higher than those in the normal control group. The expression levels of the above-mentioned proteins in the C25-140 intervention group of mice were significantly lower than those in the DQ model group (TRAF6/β-actin: 1.05±0.36 vs. 1.74±0.80, NF-κB/β-actin: 0.57±0.07 vs. 1.03±0.75, MyD88/β-actin: 0.58±0.07 vs. 1.03±0.33, all P < 0.05).
CONCLUSIONS
TRAF6 inhibitor C25-140 can alleviate AKI induced by DQ poisoning in mice by regulating the Toll-like receptor 4 (TLR4)/TRAF6/NF-κB signaling pathway and downregulating the levels of inflammatory cytokines IL-1β, IL-6, and TNF-α.
Animals
;
Male
;
Acute Kidney Injury/prevention & control*
;
Mice
;
Mice, Inbred C57BL
;
Diquat
;
TNF Receptor-Associated Factor 6/metabolism*
;
Interleukin-6/blood*
;
Kidney/pathology*
;
NF-kappa B/metabolism*
;
Peptide Fragments
8.Protective effect of recombinant Schistosoma japonicum cystatin against acute kidney injury associated with acute liver failure in mice.
Y XUE ; X YANG ; H ZHANG ; T ZHANG ; W CHEN ; X CHANG ; Y WANG
Chinese Journal of Schistosomiasis Control 2023;35(4):331-339
OBJECTIVE:
To evaluate the protective effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) against acute kidney injury induced by acute liver failure and unravel the underlying mechanism, so as to provide insights into the clinical therapy of acute kidney injury.
METHODS:
Twenty-four male C57BL/6J mice at ages of 6 to 8 weeks were randomly divided into the normal control group, rSj-Cys control group, lipopolysaccharide (LPS)/D-galactosamine (D-GaIN) model group and LPS/D-GaIN + rSj-Cys treatment group, of 6 mice each group. Mice in the LPS/D-GaIN group and LPS/D-GaIN + rSj-Cys group were intraperitoneally injected with LPS (10 μg/kg) and D-GaIN (700 mg/kg), and mice in the LPS/D-GaIN + rSj-Cys group were additionally administered with rSj-Cys (1.25 mg/kg) by intraperitoneal injection 30 min post-modeling, while mice in the rSj-Cys group were intraperitoneally injected with rSj-Cys (1.25 mg/kg), and mice in the normal control group were injected with the normal volume of PBS. All mice were sacrificed 6 h post-modeling, and mouse serum and kidney samples were collected. Serum creatinine (Cr) and urea nitrogen (BUN) levels were measured, and the pathological changes of mouse kidney specimens were examined using hematoxylin-eosin (HE) staining. Serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels were detected using enzyme-linked immunosorbent assay (ELISA), and the expression of inflammatory factors and pyroptosis-related proteins was quantified in mouse kidney specimens using immunohistochemistry. In addition, the expression of pyroptosis-related proteins and nuclear factor-kappa B (NF-κB) signaling pathway-associated proteins was determined in mouse kidney specimens using Western blotting assay.
RESULTS:
HE staining showed no remarkable abnormality in the mouse kidney structure in the normal control group and the rSj-Cys control group, and renal tubular injury was found in LPS/D-GaIN group, while the renal tubular injury was alleviated in LPS/D-GaIN+rSj-Cys treatment group. There were significant differences in serum levels of Cr (F = 46.33, P < 0.001), BUN (F = 128.60, P < 0.001), TNF-α (F = 102.00, P < 0.001) and IL-6 (F = 202.10, P < 0.001) among the four groups, and lower serum Cr [(85.35 ± 32.05) μmol/L], BUN [(11.90 ± 2.76) mmol/L], TNF-α [(158.27 ± 15.83) pg/mL] and IL-6 levels [(56.72 ± 4.37) pg/mL] were detected in the in LPS/D-GaIN + rSj-Cys group than in the LPS/D-GaIN group (all P values < 0.01). Immunohistochemical staining detected significant differences in TNF-α (F = 24.16, P < 0.001) and IL-10 (F = 15.07, P < 0.01) expression among the four groups, and lower TNF-α [(106.50 ± 16.57)%] and higher IL-10 expression [(91.83 ± 5.23)%] was detected in the LPS/D-GaIN + rSj-Cys group than in the LPS/D-GaIN group (both P values < 0.01). Western blotting and immunohistochemistry detected significant differences in the protein expression of pyroptosis-related proteins NOD-like receptor thermal protein domain associated protein 3 (NLRP3) (F = 24.57 and 30.72, both P values < 0.001), IL-1β (F = 19.24 and 22.59, both P values < 0.001) and IL-18 (F = 16.60 and 19.30, both P values < 0.001) in kidney samples among the four groups, and lower NLRP3, IL-1β and IL-18 expression was quantified in the LPS/D-GaIN + rSj-Cys treatment group than in the LPS/D-GaIN group (P values < 0.05). In addition, there were significant differences in the protein expression of NF-κB signaling pathway-associated proteins p-NF-κB p-P65/NF-κB p65 (F = 71.88, P < 0.001), Toll-like receptor (TLR)-4 (F = 45.49, P < 0.001) and p-IκB/IκB (F = 60.87, P < 0.001) in mouse kidney samples among the four groups, and lower expression of three NF-κB signaling pathway-associated proteins was determined in the LPS/D-GaIN + rSj-Cys treatment group than in the LPS/D-GaIN group (all P values < 0.01).
CONCLUSIONS
rSj-Cys may present a protective effect against acute kidney injury caused by acute liver failure through inhibiting inflammation and pyroptosis and downregulating the NF-κB signaling pathway.
Mice
;
Male
;
Animals
;
Interleukin-10
;
Tumor Necrosis Factor-alpha/genetics*
;
NF-kappa B/therapeutic use*
;
Interleukin-18/therapeutic use*
;
Schistosoma japonicum/metabolism*
;
Interleukin-6/therapeutic use*
;
Lipopolysaccharides/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Mice, Inbred C57BL
;
Acute Kidney Injury/drug therapy*
;
Liver Failure, Acute
;
Cystatins/therapeutic use*
9.Caspase-1/-11 participates in LPS-induced sepsis-associated acute kidney injury by cleaving GSDMD.
Bin ZHAI ; Li-Sha MA ; Rui-Qin SHEN ; Jian YU ; Yi-Nan TAO ; Ai-Ping XU ; De-Cui SHAO
Acta Physiologica Sinica 2023;75(1):10-16
The present study was aimed to investigate whether Gasdermin D (GSDMD)-mediated pyroptosis participated in lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (AKI), and to explore the role of caspase-1 and caspase-11 pyroptosis pathways in this process. The mice were divided into four groups: wild type (WT), WT-LPS, GSDMD knockout (KO) and KO-LPS. The sepsis-associated AKI was induced by intraperitoneal injection of LPS (40 mg/kg). Blood samples were taken to determine the concentration of creatinine and urea nitrogen. The pathological changes of renal tissue were observed via HE staining. Western blot was used to investigate the expression of pyroptosis-associated proteins. The results showed that the concentrations of serum creatinine and urea nitrogen in the WT-LPS group were significantly increased, compared with those in the WT group (P < 0.01); whereas serum creatinine and urea nitrogen in the KO-LPS group were significantly decreased, compared with those in the WT-LPS group (P < 0.01). HE staining results showed that LPS-induced renal tubular dilatation was mitigated in GSDMD KO mice. Western blot results showed that LPS up-regulated the protein expression levels of interleukin-1β (IL-1β), GSDMD and GSDMD-N in WT mice. GSDMD KO significantly down-regulated the protein levels of IL-1β, caspase-11, pro-caspase-1, caspase-1(p22) induced by LPS. These results suggest that GSDMD-mediated pyroptosis is involved in LPS-induced sepsis-associated AKI. Caspase-1 and caspase-11 may be involved in GSDMD cleavage.
Animals
;
Mice
;
Acute Kidney Injury
;
Caspase 1
;
Caspases/metabolism*
;
Creatinine
;
Lipopolysaccharides
;
Mice, Knockout
;
Nitrogen
;
Sepsis
;
Urea
;
Gasdermins/metabolism*
10.Protective mechanisms of Leontopodium leontopodioides extracts on lipopolysaccharide-induced acute kidney injury viathe NF-κB/NLRP3 pathway.
Xue BAI ; Qianqian MA ; Qi LI ; Meizhen YIN ; Ying XIN ; Dong ZHEN ; Chengxi WEI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(1):47-57
Sepsis-induced uncontrolled systemic inflammatory response syndrome (SIRS) is a critical cause of multiple organ failure. Acute kidney injury (AKI) is one of the most serious complications associated with an extremely high mortality rate in SIRS, and it lacked simple, safe, and effective treatment strategies. Leontopodium leontopodioides (Willd.) Beauv (LLB) is commonly used in traditional Chinese medicine for the treatment of acute and chronic nephritis. However, it remains unclear whether lipopolysaccharide (LPS) affects LPS-induced AKI. To identify the molecular mechanisms of LLB in LPS-induced HK-2 cells and mice, LLB was prepared by extraction with 70% methanol, while a lipopolysaccharide (LPS)-induced HK-2 cell model and an AKI model were established in this study. Renal histopathology staining was performed to observe the morphology changes. The cell supernatant and kidney tissues were collected for determining the levels of inflammatory factors and protein expression by ELISA, immunofluorescence, and Western blot. The results indicated that LLB significantly reduced the expression of IL-6 and TNF-α in LPS-induced HK-2 cells, as well as the secretion of IL-6, TNF-α, and IL-1β in the supernatant. The same results were observed in LPS-induced AKI serum. Further studies revealed that LLB remarkably improved oxidative stress and apoptosis based on the content of MDA, SOD, and CAT in serum and TUNEL staining results. Notably, LLB significantly reduced the mortality due to LPS infection. Renal histopathology staining results supported these results. Furthermore, immunofluorescence and Western blot results confirmed that LLB significantly reduced the expression of the protein related to the NF-κB signaling pathway and NLRP3, ASC, and Caspase-1 which were significantly increased through LPS stimulation. These findings clearly demonstrated the potential use of LLB in the treatment of AKI and the crucial role of the NF-κB/NLRP3 pathway in the process through which LLB attenuates AKI induced by LPS.
Animals
;
Mice
;
NF-kappa B/metabolism*
;
Lipopolysaccharides/adverse effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Acute Kidney Injury/metabolism*
;
Kidney
;
Systemic Inflammatory Response Syndrome/pathology*

Result Analysis
Print
Save
E-mail