1.MicroRNA-21 in the pathogenesis of acute kidney injury.
Ya-Feng LI ; Ying JING ; Jielu HAO ; Nathan C FRANKFORT ; Xiaoshuang ZHOU ; Bing SHEN ; Xinyan LIU ; Lihua WANG ; Rongshan LI
Protein & Cell 2013;4(11):813-819
Acute kidney injury (AKI), associated with significant morbidity and mortality, is widely known to involve epithelial apoptosis, excessive inflammation, and fibrosis in response to ischemia or reperfusion injury, which results in either chronic pathological changes or death. Therefore, it is imperative that investigations are conducted in order to find effective, early diagnoses, and therapeutic targets needed to help prevent and treat AKI. However, the mechanisms modulating the pathogenesis of AKI still remain largely undetermined. MicroRNAs (miRNAs), small non-coding RNA molecules, play an important role in several fundamental biological and pathological processes by a post transcriptional regulatory function of gene expression. MicroRNA-21 (miR-21) is a recently identified, typical miRNA that is functional as a regulator known to be involved in apoptosis as well as inflammatory and fibrotic signaling pathways in AKI. As a result, miR-21 is now considered a novel biomarker when diagnosing and treating AKI. This article reviews the correlative literature and research progress regarding the roles of miR-21 in AKI.
Acute Kidney Injury
;
diagnosis
;
drug therapy
;
genetics
;
pathology
;
Animals
;
Apoptosis
;
Biomarkers
;
metabolism
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Molecular Targeted Therapy
2.Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia.
Sisi DU ; Xiaojing WU ; Binbin LI ; Yimin WANG ; Lianhan SHANG ; Xu HUANG ; Yudi XIA ; Donghao YU ; Naicong LU ; Zhibo LIU ; Chunlei WANG ; Xinmeng LIU ; Zhujia XIONG ; Xiaohui ZOU ; Binghuai LU ; Yingmei LIU ; Qingyuan ZHAN ; Bin CAO
Frontiers of Medicine 2022;16(3):389-402
Few studies have described the key features and prognostic roles of lung microbiota in patients with severe community-acquired pneumonia (SCAP). We prospectively enrolled consecutive SCAP patients admitted to ICU. Bronchoscopy was performed at bedside within 48 h of ICU admission, and 16S rRNA gene sequencing was applied to the collected bronchoalveolar lavage fluid. The primary outcome was clinical improvements defined as a decrease of 2 categories and above on a 7-category ordinal scale within 14 days following bronchoscopy. Sixty-seven patients were included. Multivariable permutational multivariate analysis of variance found that positive bacteria lab test results had the strongest independent association with lung microbiota (R2 = 0.033; P = 0.018), followed by acute kidney injury (AKI; R2 = 0.032; P = 0.011) and plasma MIP-1β level (R2 = 0.027; P = 0.044). Random forest identified that the families Prevotellaceae, Moraxellaceae, and Staphylococcaceae were the biomarkers related to the positive bacteria lab test results. Multivariable Cox regression showed that the increase in α-diversity and the abundance of the families Prevotellaceae and Actinomycetaceae were associated with clinical improvements. The positive bacteria lab test results, AKI, and plasma MIP-1β level were associated with patients' lung microbiota composition on ICU admission. The families Prevotellaceae and Actinomycetaceae on admission predicted clinical improvements.
Acute Kidney Injury/complications*
;
Bacteria/classification*
;
Chemokine CCL4/blood*
;
Community-Acquired Infections/microbiology*
;
Humans
;
Lung
;
Microbiota/genetics*
;
Pneumonia, Bacterial/diagnosis*
;
Prognosis
;
RNA, Ribosomal, 16S/genetics*
3.A Case of Exercise-induced Acute Renal Failure with G774A Mutation in SCL22A12 Causing Renal Hypouricemia.
Journal of Korean Medical Science 2011;26(9):1238-1240
Acute renal failure with severe loin pain which develops after anaerobic exercise is rare. One of predisposing factors of exercise-induced acute renal failure is renal hypouricemia. Idiopathic renal hypouricemia is a genetic disorder characterized by hypouricemia with abnormally high renal tubular uric acid excretion. The mutation in SCL22A12 gene which encodes renal uric acid transporter, URAT1, is the known major cause of this disorder. We here described a 25-yr-old man showing idiopathic renal hypouricemia with G774A mutation in SCL22A12 who presented exercise-induced acute renal failure. There have been a few reports of mutational analysis in Korean idiopathic renal hypouricemia without acute renal failure. This is the first report of genetically diagnosed idiopathic renal hypouricemia with exercise-induced acute renal failure in Korea.
Acute Kidney Injury/*diagnosis/genetics
;
Adult
;
Amino Acid Substitution
;
DNA Mutational Analysis
;
Exercise
;
Exons
;
Humans
;
Male
;
Mutation
;
Organic Anion Transporters/*genetics
;
Organic Cation Transport Proteins/*genetics
;
Renal Tubular Transport, Inborn Errors/etiology/*genetics
;
Urinary Calculi/etiology/*genetics
4.Drug rash with eosinophilia and systemic symptoms syndrome following cholestatic hepatitis A: a case report.
Jihyun AN ; Joo Ho LEE ; Hyojeong LEE ; Eunsil YU ; Dan Bi LEE ; Ju Hyun SHIM ; Sunyoung YOON ; Yumi LEE ; Soeun PARK ; Han Chu LEE
The Korean Journal of Hepatology 2012;18(1):84-88
Hepatitis A virus (HAV) infections occur predominantly in children, and are usually self-limiting. However, 75-95% of the infections in adults are symptomatic (mostly with jaundice), with the illness symptoms usually persisting for a few weeks. Atypical manifestations include relapsing hepatitis, prolonged cholestasis, and complications involving renal injury. Drug rash with eosinophilia and systemic symptoms (DRESS) syndrome is a severe, drug-induced hypersensitivity reaction characterized by skin rash, fever, lymph-node enlargement, and internal organ involvement. We describe a 22-year-old male who presented with acute kidney injury and was diagnosed with prolonged cholestatic hepatitis A. The patient also developed DRESS syndrome due to antibiotic and/or antiviral treatment. To our knowledge, this is the first report of histopathologically confirmed DRESS syndrome due to antibiotic and/or antiviral treatment following HAV infection with cholestatic features and renal injury.
Acute Kidney Injury/diagnosis
;
Anti-Bacterial Agents/*adverse effects/therapeutic use
;
Cefotaxime/adverse effects/therapeutic use
;
Cholestasis/complications/*diagnosis
;
Cytomegalovirus/genetics
;
Cytomegalovirus Infections/drug therapy/virology
;
DNA, Viral/analysis
;
Eosinophilia/etiology
;
Exanthema/*chemically induced/pathology
;
Ganciclovir/therapeutic use
;
Hepatitis A/complications/*diagnosis/drug therapy
;
Humans
;
Hydrocortisone/therapeutic use
;
Immunoglobulins/therapeutic use
;
Male
;
Syndrome
;
Young Adult