1.Cloning and expression of the Apx IVA gene of Actionbacillus pleuroneumoniae and development of an indirect ApxIVA-ELISA.
Hong-Liang HUANG ; Rui ZHOU ; Mei-Ling CHEN ; Jian-Jie LIU ; Xiao-Juan XU ; Huang-Chun CHEN
Chinese Journal of Biotechnology 2005;21(2):294-299
Apx IV, a forth RTX toxin indentified in Actionbacillus pleuropneumoniae recently, is expressed by all A. pleuropneumoniae regardless the serotypes and inducible only in vivo toxin, so it is the optimal to develop species-specific and differentiated diagnostic assay. Here the 2445bp DNA fragment of apxIVA gene of A. pleuroneumoniae was amplified and fused in-frame to the downstream of the T7 promoter and 6 His Tag of the prokaryotic expression vector pET-28b. The construct was transformed into E. coli BL21(DE3). After induction by 1.0 mol/L IPTG, a recombinant protein about 90 kD in size, designed as ApxIVAN, was detected, which was present as inclusion bodies and reacted specifically with swine antisera to the APP-serotype-1 by dot-blot. An indirect ELISA (ApxIVA-ELISA) was developed using purified recombinant ApxIVAN from the inclusion bodies as described previously, which had excellent specificity to A. pleuroneunoniae. Using the ApxIVA-ELISA, the ApxIV antibodies were not detected in the inactivated APP bacterins vaccinated pigs, but were detected in A. pleuropneumoniae serotype 1, 2 and 7 infected pigs and mice. These results suggested that ApxIVA-ELISA can be used not only to detect all serotypes of APP, but also to differentiate the naturally infected and inactivated vaccine immunized pigs.
Actinobacillus Infections
;
diagnosis
;
microbiology
;
veterinary
;
Actinobacillus pleuropneumoniae
;
genetics
;
immunology
;
metabolism
;
Bacterial Proteins
;
genetics
;
immunology
;
metabolism
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
methods
;
veterinary
;
Gene Expression
;
Genes, Bacterial
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
metabolism
2.Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate.
Min Kyoung SHIN ; Myung Hwan JUNG ; Won Jung LEE ; Pil Son CHOI ; Yong Suk JANG ; Han Sang YOO
Journal of Veterinary Science 2011;12(4):401-403
Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection.
Actinobacillus Infections/microbiology/*prevention & control
;
Actinobacillus pleuropneumoniae
;
Animals
;
Antigens, Bacterial/immunology
;
Bacterial Proteins/*immunology
;
Bacterial Vaccines/*immunology
;
Cholera Toxin/*chemistry
;
Female
;
Hemolysin Proteins/*immunology
;
Immunization, Secondary
;
Mice
;
Mice, Inbred ICR
;
Plants, Genetically Modified
;
Zea mays/*genetics
3.Construction and characterization of Actinobacillus pleuropneumoniae serovar 7 live attenuated vaccine strain co-expressing ApxIA.
Jinlin LIU ; Yan CHEN ; Linlin HU ; Weicheng BEI ; Huanchun CHEN
Chinese Journal of Biotechnology 2010;26(3):305-310
Actinobacillus pleuropneumoniae (A. pleuropneumoniae), the causative agent of porcine contagious pleuropneumonia (PCP), is a significant pathogen of the world pig industry, vaccination is potentially an effective tool for the prevention of PCP. The purpose of present study was to enhance the immunogenicity of A. pleuropneumoniae live vaccine strain HB04C- (serovar 7), which was unable to express ApxIA, and to develop effective multivalent vaccines for the respiratory pathogens based on the attenuated A. pleuropneumoniae. We introduced a shuttle vector containing intact apxIA gene into HB04C-, generating HB04C2, an A. pleuropneumoniae serovar 7 live attenuated vaccine strain co-expressing ApxIA. Then we investigated the biological characteristics of HB04C2. We found that the shuttle vector expressing ApxIA was stable in HB04C2, and the growth ability of HB04C2 was not affected by the shuttle vector. We observed that HB04C2 elicited detectable antibodies against ApxIA and ApxIIA when it was administrated intratracheally as a live vaccine in pigs, and all immunized pigs were protected from heterologous virulent A. pleuropneumoniae (serovar 1) challenge. In conclusion, we demonstrated that A. pleuropneumoniae live vaccine could be used as a vector for expression of heterologous antigens.
Actinobacillus Infections
;
prevention & control
;
veterinary
;
Actinobacillus pleuropneumoniae
;
classification
;
immunology
;
Animals
;
Bacterial Proteins
;
biosynthesis
;
genetics
;
Bacterial Vaccines
;
biosynthesis
;
immunology
;
Hemolysin Proteins
;
biosynthesis
;
genetics
;
Pleuropneumonia
;
microbiology
;
prevention & control
;
Swine
;
Swine Diseases
;
microbiology
;
prevention & control
;
Vaccines, Attenuated
;
biosynthesis
;
immunology
4.Study on immunogenicity of the N-terminal polypeptide of RTX toxin I of Actinobacillus pleuropneumoniae.
Ling MEI ; Rui ZHOU ; Hai-Song LU ; Wei-Cheng BEI ; Wei-Hong LIU ; Li-Wen LIN ; Wen-Zhou HONG ; Huan-Chun CHEN
Chinese Journal of Biotechnology 2006;22(1):39-45
ApxI is one of the most important virulence factors of Actinobacillus pleuropneumoniae (APP). To study the immunogenicity of the ApxI, the complete coding sequence (3146bp) and its 5'-terminal 1140 bp fragment of the apxIA gene were separately cloned into the prokaryotic expression vector pET-28a, and expressed in the E. coli BL21 (DE3) with induction by IPTG. The expression products, rApxIA and rApxIAN, were present in a form of inclusion bodies and showed the same immunological reactivity as natural ApxI (nApxI) in Western-blot analysis. BALB/c mice were intraperitoneally immunized with the rApxIA, rApxIAN and nApxI respectively. The serum antibody levels of the rApxIAN immunized mice were significantly lower than those immunized with rApxIA or nApxI in an ApxI-specific ELISA, but serum neutralization test demonstrated that immunized mice with rApxIAN, rApxIA and nApxI could generate similar levels of antibodies neutralizing the hemolytic activity of the natural ApxI. The rApxIAN was able to elicite 80% protection rate against APP serovar 1 and 100% against serovar 2 when challenged at a dose of one LD50 after 2 weeks of boost immunization.
Actinobacillus Infections
;
prevention & control
;
Actinobacillus pleuropneumoniae
;
genetics
;
immunology
;
Animals
;
Antibodies
;
blood
;
Bacterial Proteins
;
genetics
;
immunology
;
Bacterial Toxins
;
genetics
;
immunology
;
Bacterial Vaccines
;
immunology
;
Cytotoxins
;
genetics
;
immunology
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Hemolysin Proteins
;
genetics
;
immunology
;
Inclusion Bodies
;
genetics
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Peptides
;
genetics
;
immunology
;
Recombinant Proteins
;
genetics
;
immunology
5.Effective methods for the production of immunoglobulin Y using immunogens of Bordetella bronchiseptica, Pasteurella multocida and Actinobacillus pleuropneumoniae.
Na Ri SHIN ; In Soo CHOI ; Jong Man KIM ; Won HUR ; Han Sang YOO
Journal of Veterinary Science 2002;3(1):47-57
Swine respiratory diseases induce severe economic losses in the swine industry worldwide. Several methods have been developed and applied to control these diseases. However, there are still problems of disease control in the swine industry. Recently, egg yolk antibodies have been found to offer several advantages for disease control in animals and humans. In a previous study (24), antibodies to several causative pathogens of swine respiratory diseases were developed. However, several problems remained, especially in terms of reduced laying rates. Therefore, experimental vaccines were reformulated with various bacterial antigens of the swine respiratory diseases. After immunizing hens with the antigens, antibody profiles and other effects including laying rates were investigated and compared to those of the previous study. Profiles of antibody titers were very similar with those of the previous study. However, side effects, such as depression, weakness, reduction of laying rates and mortality, were dramatically lowered and laying rates were increased in hens injected with certain experimental vaccines. In particular, laying rates of hens injected with vaccines against atrophic rhinitis were increased up to 84% by injecting a vaccine composed of only the DNTs of B. bronchiseptica and P. multocida D:4. Efficacies of the vaccines against swine pneumonic pasteurellosis and pleuropneumonia were very similar with those of the previous study. These results suggest that new vaccines could be effective in the production of egg yolk antibodies against the causative agents of swine respiratory diseases.
Actinobacillus pleuropneumoniae/classification/genetics/*immunology
;
Animals
;
Antibodies, Bacterial
;
Antibody Formation
;
Bacterial Outer Membrane Proteins/genetics/isolation & purification
;
Bordetella bronchiseptica/classification/genetics/*immunology
;
Egg Yolk/microbiology
;
Female
;
Immunoglobulins/*genetics
;
Oviposition
;
Pasteurella multocida/classification/genetics/*immunology
;
Serotyping
;
Swine
6.Enhancement of protective immune responses by oral vaccination with Saccharomyces cerevisiae expressing recombinant Actinobacillus pleuropneumoniae ApxIA or ApxIIA in mice.
Sung Jae SHIN ; Seung Won SHIN ; Mi Lan KANG ; Deog Yong LEE ; Moon Sik YANG ; Yong Suk JANG ; Han Sang YOO
Journal of Veterinary Science 2007;8(4):383-392
We previously induced protective immune response by oral immunization with yeast expressing the ApxIIA antigen. The ApxI antigen is also an important factor in the protection against Actinobacillus pleuropneumoniae serotype 5 infection; therefore, the protective immunity in mice following oral immunization with Saccharomyces cerevisiae expressing either ApxIA (group C) or ApxIIA (group D) alone or both (group E) was compared with that in two control groups (group A and B). The immunogenicity of the rApxIA antigen derived from the yeast was confirmed by a high survival rate and an ApxIA-specific IgG antibody response (p < 0.01). The highest systemic (IgG) and local (IgA) humoral immune responses to ApxIA and ApxIIA were detected in group E after the third immunization (p < 0.05). The levels of IL-1beta and IL-6 after challenge with an A. pleuropneumoniae field isolate did not change significantly in the vaccinated groups. The level of TNF-alpha increased in a time-dependent manner in group E but was not significantly different after the challenge. After the challenge, the mice in group E had a significantly lower infectious burden and a higher level of protection than the mice in the other groups (p < 0.05). The survival rate in each group was closely correlated to the immune response and histopathological observations in the lung following the challenge. These results suggested that immunity to the ApxIA antigen is required for optimal protection.
Actinobacillus Infections/prevention & control
;
Actinobacillus pleuropneumoniae/genetics/*immunology
;
Animals
;
Antibodies, Bacterial/blood
;
Bacterial Proteins/analysis/*immunology
;
Cytokines/analysis/blood
;
Disease Models, Animal
;
Female
;
Hemolysin Proteins/analysis/*immunology
;
Immunoglobulin A/blood/immunology
;
Intestines/immunology
;
Lung/cytology/immunology
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins/*immunology
;
Saccharomyces cerevisiae/*genetics/immunology
;
Survival Analysis
;
Time Factors
;
Vaccination
;
Vaccines, Synthetic/administration & dosage/*immunology
7.Acute toxicity and immunoprotection of recombinant apxI toxin of Actinobacillus pleuropneumoniae in mice.
Ke-Xia YAN ; Jian-Jie LIU ; Rui ZHOU ; Bin WU ; Wei-Hong LIU ; Huan-Chun CHEN
Chinese Journal of Biotechnology 2006;22(1):65-70
Acute toxicity and immunoprotection of Actinobacillus pleuropneumoniae (APP) ApxI toxin recombinant proteins (include crude inclusion bodies and refolded recombinant protein) were evaluated in mice, and compared with the natural ApxI extracted from culture supernatant of APP serotype 10. In the acute toxicity experiment, the three proteins were intraperitoneally injected into Kunming mice in a dose of 200microg per mouse. The body and organ weight, heamatological and biochemical indexes were examined at 24h, 7 days and 14 days post administration. There was no death after the intraperitoneal administration of the three proteins, and no significant change was found in the body weight, organ indexes, heamatological and biochemical indexes. To study their immunoprotection, the three proteins were emulsified with Freund's adjuvant respectively and vaccinated the mice twice with a 2-week of interval. Two weeks after the second vaccination, the mice were challenged intraperitoneally with a lethal dose of APP serotype 10 (1.09 x 10(8) cfu), and serums were examined by an ApxI-specific ELISA. The results revealed that the recombinant protein had a good immunogenicity and could induce protection immune reaction.
Actinobacillus Infections
;
prevention & control
;
Actinobacillus pleuropneumoniae
;
genetics
;
immunology
;
metabolism
;
Animals
;
Bacterial Proteins
;
genetics
;
immunology
;
Bacterial Vaccines
;
genetics
;
immunology
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Female
;
Hemolysin Proteins
;
genetics
;
immunology
;
Immunization
;
Male
;
Mice
;
Random Allocation
;
Recombinant Proteins
;
genetics
;
immunology
;
Toxicity Tests, Acute
8.A predictive model for the level of sIgA based on IgG levels following the oral administration of antigens expressed in Sacchromyces cerevisiae.
Sung Jae SHIN ; Seung Won SHIN ; Eun Jin CHOI ; Deog Yong LEE ; Jeong Min AHN ; Moon Sik YANG ; Yong Suk JANG ; Han Sang YOO
Journal of Veterinary Science 2005;6(4):305-309
Oral vaccination may be the most efficient way of inducing an immune response at the remote mucosal site through the common mucosal immune network. Antigenspecific secretory IgA (sIgA) is the major immunoglobulin type generally detected in the secretions of experimental animals following an effective oral immunization. Actinobacillus pleuropneumoniae causing disease in the lung of pig initially interacts, colonizes, and infects the host tissues at the mucosal surface of the respiratory tract. Also, importantly for A. pleuropneumoniae protection, the quantity of sIgA in the lung had merits associated with the mucosal immunity. However, there is no simple method to monitor the level of sIgA as an indicator for the induction of local immune responses by an oral vaccination in the target tissue. Therefore, the relationship between sIgA and IgG was analyzed to evaluate the induction of local immune responses by an oral immunization with Saccharomyces cerevisiae expressing the apxIA and apxIIA genes of A. pleuropneumoniae in this study. The correlation coefficient of determination (r2 x 100) for paired samples in both vaccinated and control groups showed a significant positive-relationship between IgG in sera and sIgA in the lung or intestine. These results indicated that IgG antibody titers in sera could be useful to indirectly predict local immune response, and sIgA, in the lung or intestine to evaluate the efficacy of an oral vaccination.
Actinobacillus pleuropneumoniae
;
Administration, Oral
;
Animals
;
Antigens, Fungal/*immunology
;
Bacterial Proteins/genetics/immunology
;
Bacterial Vaccines/*immunology
;
Disease Models, Animal
;
Female
;
Hemolysin Proteins
;
Immunity, Mucosal/*immunology
;
Immunoglobulin A, Secretory/*analysis
;
Immunoglobulin G/*blood
;
Intestine, Small/immunology
;
Lung/immunology
;
Mice
;
Mice, Inbred BALB C
;
Saccharomyces cerevisiae/*immunology