1.Hippocampus quinolinic acid modulates glutamate and NMDAR/mGluR1 in chronic unpredictable mild stress-induced depression.
Hui-Bin CHEN ; Fei LI ; Shuai WU ; Shu-Cheng AN
Acta Physiologica Sinica 2013;65(6):577-585
The present study was to investigate the role of the quinolinic acid (QUIN) and its relationship with N-methyl-D-aspartic acid (NMDA) receptor and metabotropic glutamate receptor 1 (mGluR1) in depression induced by chronic unpredictable mild stress (CUMS) in hippocampus. CUMS-induced depression model was established in Sprague-Dawley rats. Intrahippocampal injections of QUIN, QUIN antagonist Ro61-8048, non-competitive NMDA receptor antagonist MK-801 and mGluR1 antagonist AIDA were respectively adopted by rat brain stereotaxic coordinates. The behavioral observations were conducted by measurement of weight changes, sucrose preference test, open-field test and tail suspension test. The concentration of glutamic acid (Glu) and the expression of its receptor subunits in hippocampus were detected by HPLC and Western blot, respectively. The QUIN content in hippocampus was determined by enzyme linked immunosorbent assay (ELISA). The result showed that CUMS significantly induced the depressive-like behaviors in rats, increased the contents of QUIN and Glu, and upregulated the expression of NMDA receptor subunits NR2B and mGluR1 in hippocampus. Microinjection of QUIN into hippocampus resulted in animal depressive-like behaviors, and increased the content of Glu and the expression of NR2B and mGluR1 significantly. QUIN antagonist Ro61-8048 effectively restrained the depression-like behaviors induced by CUMS, and decreased the content of Glu and the expression of NR2B and mGluR1 significantly. Intrahippocampal injections of MK-801 and AIDA effectively improved the depression-like behaviors induced by CUMS and decreased the Glu content. The results suggest that CUMS may contribute to the production and release of QUIN in hippocampal microglia. QUIN results in elevation of Glu level via NMDA receptor and mGluR1, and the increase of expression of NR2B and mGluR1 in hippocampus, which leads to depression-like behaviors in the end.
Animals
;
Behavior, Animal
;
Depression
;
drug therapy
;
Dizocilpine Maleate
;
pharmacology
;
Glutamic Acid
;
metabolism
;
Hippocampus
;
drug effects
;
metabolism
;
Quinolinic Acid
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Metabotropic Glutamate
;
metabolism
;
Receptors, N-Methyl-D-Aspartate
;
metabolism
;
Stress, Psychological
2.Effect of aquaporin-4 deficiency on intravenous anaesthetic induced hypnotic effects in mice.
Qiao-Mei ZHOU ; ; wftuyx02@163.com. ; Yun-Luo LÜ ; Gang HU ; Yin-Ming ZENG ; Wei-Feng TU
Acta Physiologica Sinica 2013;65(6):569-576
The deficiency of aquaporin-4 (AQP4) has been reported to alter release of neurotransmitters in the mouse brain. However, the functional relevance of AQP4 in mediating essential components of the general anaesthetic state is unknown. The aim of the present study was to investigate the role of AQP4 in general anaesthesia in mice lacking AQP4. The hypnotic effects of propofol, ketamine, and pentobarbital in AQP4 knockout (KO) and CD1 control mice were evaluated using the behavioural endpoint of loss of righting reflex (LORR). The effects of propofol on extracellular levels of amino acids in prefrontal cortex of freely moving mice were investigated using microdialysis coupled to high performance liquid chromatography with fluorescent detection. The result showed that, after receiving ketamine or pentobarbital, LORR occurred at earlier time in KO mice than that in control animals. Intraperitoneal injection of ketamine or pentobarbital increased the duration of LORR. After the administration of propofol, the duration of LORR was significantly reduced in KO mice compared with that in controls. Propofol increased the extracellular levels of aspartate, glutamate, and GABA, but not taurine, in prefrontal cortex. There were significant differences of increase patterns of the three kinds of neurotransmitters between KO and WT mice. Notably, the duration of GABA level increase correlated with the duration of LORR in two genotypes of mice. These results provide in vivo evidence of different responses in time-dependent release of excitatory and inhibitory neurotransmitters in prefrontal cortex of the two genotypes of mice. It is suggested that changes in anaesthetic reactions in mice with AQP4 loss may be related to neurotransmitter regulation, and that normal functioning of AQP4 plays an important role in the maintenance of anaesthetic hypnosis.
Anesthetics, Intravenous
;
pharmacology
;
Animals
;
Aquaporin 4
;
deficiency
;
genetics
;
Hypnotics and Sedatives
;
pharmacology
;
Ketamine
;
pharmacology
;
Mice
;
Mice, Knockout
;
Neurotransmitter Agents
;
metabolism
;
Pentobarbital
;
pharmacology
;
Prefrontal Cortex
;
drug effects
;
metabolism
;
Propofol
;
pharmacology
3.Involvement of store-operated calcium channels and receptor-operated calcium channels in Ca(2+)-sensing receptor-evoked extracellular Ca(2+) influx and NO generation in human umbilical vein endothelial cells.
Hui ZHAO ; Xiao LIANG ; Hua ZHONG ; Chun-Jun ZHANG ; Fang HE
Acta Physiologica Sinica 2013;65(5):553-561
This paper aims to investigate the effect of store-operated calcium channels (SOC) and receptor-operated calcium channels (ROC) on Ca(2+)-sensing receptor (CaR)-induced extracellular Ca(2+) influx and nitric oxide (NO) generation in human umbilical vein endothelial cells (HUVEC). SOC blocker, non-selective cation channel blocker, ROC agonist and ROC blocker were used separately and combined. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by Fura-2/AM loading. The activity of endothelial nitric oxide synthase (eNOS) and the production of NO were determined by the DAF-FM diacetate (DAF-FM DA). The results showed that increases of [Ca(2+)]i, eNOS activity and NO generation induced by CaR agonist Spermine were all reduced after single blocking the SOC or ROC, respectively (P < 0.05). ROC agonist can partially abolish the ROC blocker's effect (P < 0.05). The above mentioned effects evoked by CaR agonist Spermine were further reduced when blocking both SOC and ROC than single blocking SOC or ROC in HUVEC (P < 0.05). In conclusion, these results suggest that the SOC and ROC participate in the processes of CaR-evoked extracellular Ca(2+) influx and NO generation by a synergistic manner in HUVEC.
Calcium
;
physiology
;
Calcium Channel Blockers
;
pharmacology
;
Calcium Channels
;
physiology
;
Calcium Signaling
;
Fluoresceins
;
pharmacology
;
Human Umbilical Vein Endothelial Cells
;
physiology
;
Humans
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type III
;
metabolism
;
Receptors, Calcium-Sensing
;
physiology
4.Impaired effect of BHC80 gene knock-down on the cardiac development in zebrafish.
Jia-Yun HOU ; ; Dong-Li SONG ; Da-Qing JIN ; Jing-Ying HU ; Xiang-Dong WANG
Acta Physiologica Sinica 2013;65(5):547-552
The effect of BHC80 (a component of BRAF-HDAC complex) on development was not well studied, because BHC80 gene knock-out mice died in one day after birth. Interestingly, zebrafish embryos can live, even if their important organs like cardiac system has severe dysfunction, as 25%-40% O2 are supplied through their skin. Therefore, a model of BHC80 gene knock-down zebrafish embryos was established to explore the effect of BHC80 on the early embryonic development. BHC80-morpholino antisense oligonucleotides 2 (BHC80-MO2) was designed and injected into zebrafish embryos to interrupt the correct translation of BHC80 mRNA at one or two cells stage, which was proved by RT-PCR analysis. Two control groups, including non-injection group and control-MO (con-MO) injection group, and four different doses of BHC80-MO2 injection groups, including 4 ng, 6 ng, 8 ng and 10 ng per embryo were set up. The embryonic heart phenotype and cardiac function were monitored, analyzed and compared between con-MO and BHC80-MO2 groups by fluorescence microscope in vmhc:gfp transgenic zebrafish which express green fluorescent protein in ventricle. The results showed that BHC80-MO2 microinjection effectively knocked down the BHC80 gene expression, because the BHC80-MO2 group emerged a new 249 bp band which reduced 51 bp compared to 300 bp band of con-MO group in RT-PCR analysis, and the 51 bp was the extron 10. The abnormal embryo rate rose with the increase of BHC80-MO2 dosage. The proper BHC80-MO2 injection dosage was 8 ng per embryo, as minor embryos had abnormal phenotype in 4 ng and 6 ng per embryo groups and most embryos died in 10 ng per embryo group. BHC80-MO2 embryos exhibited abnormal cardiac phenotype, including imbalance of the proportion of heart ventricle to atrium, incomplete D-loop, even tubular heart, slow heart rates and cardiac dysfunction. The results from a model of BHC80 gene knock-down zebrafish embryos show that the abnormal cardiac phenotype and cardiac dysfunction of BHC80-MO2 embryos may be one of the probable reasons for the BHC80 gene knock-out mice death, which would provide a good research model to clarify the mechanism of cardiac development.
Animals
;
Embryonic Development
;
genetics
;
Gene Expression Regulation, Developmental
;
Gene Knockdown Techniques
;
Heart
;
embryology
;
Histone Deacetylases
;
genetics
;
Mice, Knockout
;
Oligonucleotides, Antisense
;
RNA, Messenger
;
Zebrafish
;
embryology
;
Zebrafish Proteins
;
genetics
5.Effect of different altitudes on telomere length of rat peripheral blood leukocyte.
Ya-Ping WANG ; Ying-Zhong YANG ; Lan MA ; Yan-Xia ZHAO ; Ri-Li GE
Acta Physiologica Sinica 2013;65(5):540-546
The present study was aimed to investigate the effect of different altitudes on telomere length of rat peripheral blood leukocyte and possible mechanism. Sixty male rats were randomly divided into three groups, lower altitude control group (10 m), moderate altitude group (2 260 m) and very high altitude group (simulated 5 000 m). The moderate altitude group and very high altitude group rats were transported to Xining and hypobaric chamber in Qinghai University, respectively. The peripheral blood specimens were extracted 30 d after the transportation. By means of real-time PCR, automatic blood cell analyzer, ELISA, TBA and WST-1 methods, the telomere lengths of blood leukocyte, the hemoglobin (Hb) contents, the plasma levels of telomerase reverse transcriptase (TERT) and hypoxia-inducible factor 1α (HIF-1α), the plasma content of malondialdehyde (MDA) and superoxide dismutase (SOD) activity were measured, respectively. The results showed that the telomere lengths of peripheral blood leukocyte in moderate altitude group were longer than those in control group and very high altitude group. The changes of TERT were compatible with the telomere length of peripheral blood leukocyte under different altitudes. The levels of HIF-1α in moderate altitude group and very high altitude group were higher than that of control group. The very high altitude group showed decreased SOD activities and increased level of MDA, compared with the other two groups. These results suggest that the telomere lengths of rat peripheral blood leukocyte in moderate altitude are elongated, and that the telomere-elongating effect is lost under very high altitude. The changes of HIF-1α, TERT and oxidative stress damage are the main mechanisms of telomere length changes. Moderate altitude living might be beneficial to increasing the life span in mammals.
Altitude
;
Animals
;
Hemoglobins
;
metabolism
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
blood
;
Leukocytes
;
physiology
;
Male
;
Malondialdehyde
;
blood
;
Oxidative Stress
;
Rats
;
Superoxide Dismutase
;
metabolism
;
Telomerase
;
blood
;
Telomere
;
physiology
6.Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn.
Ying SONG ; Yong-Mei ZHANG ; Jie XU ; Jing-Ru WU ; Xia QIN ; Rong HUA
Acta Physiologica Sinica 2013;65(5):533-539
The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P < 0.05). Local administration of 50 nmol/L tetrodotoxin (TTX) on DRG neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P < 0.05). On the other side, local administration of 100 mmol/L KCl on DRG neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P < 0.05). The study suggests that the excitability of WDR neurons is influenced by spontaneous firings of DRG neurons after CCD.
Action Potentials
;
Animals
;
Ganglia, Spinal
;
physiology
;
Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord Dorsal Horn
;
cytology
7.Interrelation between the hypothalamic arcuate nucleus and the bone variation of osteoporosis in rats.
Acta Physiologica Sinica 2013;65(5):525-532
This study investigated the interrelation between the hypothalamic arcuate nucleus (ARC) and the bone variation of osteoporosis in rats. Four animal models of ovariectomy-induced osteoporosis (OVX), glucocorticoid-induced osteoporosis (GIOP), retinoic acid-induced osteoporosis (RAOP) and senile osteoporosis (SOP) were used to study the influence of osteoporosis on ARC. Ovariectomized rats were further treated with thymopeptide, ciclosporin and exercise respectively to detect the changes of ARC nerve cells number. The results showed that: (1) The OVX, GIOP, RAOP and SOP models were successfully established, showing osteoporosis as well as decrease of the number of ARC nerve cells; (2) Thymopeptide and exercise respectively alleviated the bone loss induced by ovariectomy, accompanied by increase of the number of ARC nerve cells, while ciclosporin further increased the bone loss of ovariectomized rats, accompanied by further decrease of the number of ARC nerve cells. These results suggest that there is a close interrelationship between ARC and osteoporosis in rat. There is a hypothalamus-pituitary-bone (HPB) axis, and HPB axis regulates the mechanism of osteoporosis in rats.
Animals
;
Arcuate Nucleus of Hypothalamus
;
physiopathology
;
Bone and Bones
;
physiopathology
;
Disease Models, Animal
;
Female
;
Osteoporosis
;
chemically induced
;
pathology
;
Ovariectomy
;
Rats
8.Inhibitory effect of exogenous insulin-like growth factor binding protein 7 on proliferation of human breast cancer cell line MDA-MB-453 and its mechanism.
Lei YUAN ; Wen-Juan FAN ; Xu-Guang YANG ; Shu-Mei RAO ; Jin-Ling SONG ; Guo-Hua SONG
Acta Physiologica Sinica 2013;65(5):519-524
The present study was to investigate the effects of exogenous insulin-like growth factor binding protein 7 (IGFBP7) on the proliferation of human breast cancer cell line MDA-MB-453 and its possible mechanism. By means of MTT method in vitro, the results showed exogenous IGFBP7 inhibited the growth of MDA-MB-453 cells (IC50 of IGFBP7 = 8.49 μg/mL) in time- and concentration-dependent manner. SB203580, p38(MAPK) inhibitor, blocked the anti-proliferative effect of exogenous IGFBP7. The flow cytometry assay showed that exogenous IGFBP7 remarkably induced G0/G1 arrest in MDA-MB-453 cells. The Western blot showed that exogenous IGFBP7 promoted phosphorylation of p38(MAPK), up-regulated expression of p21(CIP1/WAF1), and inhibited phosphorylation of Rb. SB203580 restrained exogenous IGFBP7-induced regulation of p21(CIP1/WAF1) and p-Rb in MDA-MB-453 cells. In conclusion, the present study suggests that exogenous IGFBP7 could activate the p38(MAPK) signaling pathway, upregulate p21(CIP1/WAF1) expression, inhibit phosphorylation of Rb, and finally induce G0/G1 arrest in MDA-MB-453 cells.
Breast Neoplasms
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Female
;
Humans
;
Imidazoles
;
pharmacology
;
Insulin-Like Growth Factor Binding Proteins
;
pharmacology
;
Phosphorylation
;
Pyridines
;
pharmacology
;
Signal Transduction
;
Somatomedins
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
9.Inhibitory effect of luteolin on the angiogenesis of chick chorioallantoic membrane and invasion of breast cancer cells via downregulation of AEG-1 and MMP-2.
Ying JIANG ; Kun-Peng XIE ; Hong-Nan HUO ; Li-Meng WANG ; Wei ZOU ; Ming-Jie XIE
Acta Physiologica Sinica 2013;65(5):513-518
The purpose of the present study was to investigate the effect of luteolin on the angiogenesis and invasion of breast cancer cells. MTT assay was used to examine breast cancer proliferation. The chick chorioallantoic membrane model was used to assess the angiogenesis effect. Wound healing assay was used to assess cell invasion ability. Western blot was used to analyze Bcl-2, AEG-1 and MMP-2 expression levels. The results showed luteolin inhibited MCF-7 cells proliferation in a dose- and time-dependent manner, and the expression of Bcl-2 protein was decreased. Luteolin had a strong anti-angiogenesis of chick chorioallantoic membrane. After treatment of MCF-7 cells with luteolin at 60 μmol/L for 48 h, migration rate was reduced by 71.07% compared with control (P < 0.01). After treatment of MCF-7 cells with luteolin at 60 μmol/L for 48 h, the expression of AEG-1 and MMP-2 was reduced by 82.34% (P < 0.05) and 85.70% (P < 0.05) respectively, compared with control. In conclusion, the results suggest that luteolin can inhibit the proliferation of breast cancer cells, and suppress the expression of Bcl-2. Furthermore, luteolin has strong anti-angiogenesis of chick chorioallantoic membrane and anti-invasive activity on breast cancer cells, and down-regulates the expression of AEG-1 and MMP-2.
Animals
;
Breast Neoplasms
;
pathology
;
Cell Adhesion Molecules
;
metabolism
;
Cell Proliferation
;
Chickens
;
Chorioallantoic Membrane
;
drug effects
;
Down-Regulation
;
Female
;
Humans
;
Luteolin
;
pharmacology
;
MCF-7 Cells
;
Matrix Metalloproteinase 2
;
metabolism
;
Neovascularization, Pathologic
;
pathology
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
10.Influence of prenatal alcohol exposure on retinal development and cell differentiation.
Yan XI ; Jie ZHOU ; Wei-Fang KONG ; Qiang WANG ; Bin LIU ; Hong ZHENG ; Jin-Bo DENG
Acta Physiologica Sinica 2013;65(5):505-512
The aim of the present study was to investigate the effects of prenatal alcohol exposure (PAE) on the development and cell differentiation of retina in offspring. The mouse model of PAE was made. HE staining and immunofluorescent labeling were carried out to visualize the structure, development and cell differentiation of the retina from postnatal day 0 (P0)-P30 offspring. The results showed that PAE can lead to the retardation of retinal development, the reduction of number of bipolar cells and horizontal cells, the disorder of horizontal cells' polarity, as well as the retinal thickening in a dose-dependent manner. The data suggest that alcohol exposure during pregnancy can lead to the developmental retardation of retina and decreased number of bipolar cells and horizontal cells in the retina of offspring.
Animals
;
Cell Differentiation
;
drug effects
;
Disease Models, Animal
;
Ethanol
;
adverse effects
;
Female
;
Male
;
Mice
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
chemically induced
;
Retina
;
cytology
;
drug effects
;
Retinal Bipolar Cells
;
drug effects
;
Retinal Horizontal Cells
;
drug effects