1.Research on hybrid brain-computer interface based on imperceptible visual and auditory stimulation responses.
Zexin PANG ; Yijun WANG ; Qingpeng DONG ; Zijian CHENG ; Zhaohui LI ; Ruoqing ZHANG ; Hongyan CUI ; Xiaogang CHEN
Journal of Biomedical Engineering 2025;42(4):660-667
In recent years, hybrid brain-computer interfaces (BCIs) have gained significant attention due to their demonstrated advantages in increasing the number of targets and enhancing robustness of the systems. However, Existing studies usually construct BCI systems using intense auditory stimulation and strong central visual stimulation, which lead to poor user experience and indicate a need for improving system comfort. Studies have proved that the use of peripheral visual stimulation and lower intensity of auditory stimulation can effectively boost the user's comfort. Therefore, this study used high-frequency peripheral visual stimulation and 40-dB weak auditory stimulation to elicit steady-state visual evoked potential (SSVEP) and auditory steady-state response (ASSR) signals, building a high-comfort hybrid BCI based on weak audio-visual evoked responses. This system coded 40 targets via 20 high-frequency visual stimulation frequencies and two auditory stimulation frequencies, improving the coding efficiency of BCI systems. Results showed that the hybrid system's averaged classification accuracy was (78.00 ± 12.18) %, and the information transfer rate (ITR) could reached 27.47 bits/min. This study offers new ideas for the design of hybrid BCI paradigm based on imperceptible stimulation.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual/physiology*
;
Acoustic Stimulation
;
Photic Stimulation
;
Electroencephalography
;
Evoked Potentials, Auditory/physiology*
;
Adult
2.Rhythm Facilitates Auditory Working Memory via Beta-Band Encoding and Theta-Band Maintenance.
Suizi TIAN ; Yu-Ang CHENG ; Huan LUO
Neuroscience Bulletin 2025;41(2):195-210
Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.
Humans
;
Memory, Short-Term/physiology*
;
Male
;
Beta Rhythm/physiology*
;
Female
;
Theta Rhythm/physiology*
;
Young Adult
;
Auditory Perception/physiology*
;
Adult
;
Electroencephalography
;
Acoustic Stimulation
;
Reaction Time/physiology*
;
Brain/physiology*
;
Attention/physiology*
3.Functional Connectivity Encodes Sound Locations by Lateralization Angles.
Renjie TONG ; Shaoyi SU ; Ying LIANG ; Chunlin LI ; Liwei SUN ; Xu ZHANG
Neuroscience Bulletin 2025;41(2):261-271
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment. Previous studies have suggested that there is an auditory "where" pathway in the cortex for processing sound locations. The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding, in which each unilateral region is activated by sounds coming from the contralateral hemifield. However, it is still unclear how these regions interact with each other to form a unified representation of the auditory space. In the present study, we investigated whether functional connectivity in the auditory "where" pathway encoded sound locations during passive listening. Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations (-90°, -45°, 0°, 45°, 90°). We were able to decode sound locations from the functional connectivity patterns of the "where" pathway. Furthermore, we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline. In addition, whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles. Overall, our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns, which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
Humans
;
Sound Localization/physiology*
;
Male
;
Female
;
Magnetic Resonance Imaging
;
Young Adult
;
Functional Laterality/physiology*
;
Adult
;
Brain Mapping
;
Auditory Cortex/physiology*
;
Acoustic Stimulation
;
Auditory Pathways/physiology*
;
Brain/physiology*
4.Pre-action Neuronal Encoding of Task Situation Uncertainty in the Medial Prefrontal Cortex of Rats.
Qiulin HUA ; Yu PENG ; Jianyun ZHANG ; Baoming LI ; Jiyun PENG
Neuroscience Bulletin 2025;41(11):2036-2048
Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior. It often happens that humans and animals make decisions and prepare actions under uncertain situations. Uncertainty would significantly affect the state of animals' minds, but may not be reflected in behavior. How to "read animals' mind state" under different situations is a challenge. Here, we report that neuronal activity in the medial prefrontal cortex (mPFC) of rats can reflect the environmental uncertainty when the task situation changes from certain to uncertain. Rats were trained to perform behavioral tasks under certain and uncertain situations. Under certain situations, rats were required to simply repeat two nose-poking actions that each triggered short auditory tone feedback (single-task situation). Whereas under the uncertain situation, the feedback could randomly be either the previous tone or a short musical rhythm. No additional action was required upon the music feedback, and the same secondary nose-poking action was required upon the tone feedback (dual-task situation); therefore, the coming task was uncertain before action initiation. We recorded single-unit activity from the mPFC when the rats were performing the tasks. We found that in the dual task, when uncertainty was introduced, many mPFC neurons were actively engaged in dealing with the uncertainty before the task initiation, suggesting that the rats could be aware of the task situation change and encode the information in the mPFC before the action of task initiation.
Animals
;
Prefrontal Cortex/cytology*
;
Uncertainty
;
Neurons/physiology*
;
Male
;
Rats
;
Rats, Long-Evans
;
Action Potentials/physiology*
;
Acoustic Stimulation
5.Pupillometry reveals hyper-arousal in response to auditory stimuli in autistic children.
Ci SONG ; Runsheng MA ; Wei NI ; Xinyue PENG ; Xue LI ; Ruoxi SHI ; Yuanping ZHANG ; Li YI
Journal of Zhejiang University. Science. B 2024;25(11):996-1008
Atypical sensory responsivity is widely reported in autistic individuals and is related to elevated functional difficulties. Dynamically, altered initial responses and/or habituation rates could underlie their atypical averaged responses to repeated sensory stimuli. In this study we aimed to measure the arousal level in response to different types of auditory stimuli and the dynamic change of atypical arousal level using pupillometry in autistic children. In Experiment 1, 43 autistic children and 49 neurotypical (NT) children were asked to passively listen to a mild sound and an aversive sound repeatedly. In Experiment 2, 39 autistic children and 44 NT children who went through Experiment 1 listened to a gradually emerging non-startling sound and a suddenly emerging startling sound in a random order. We found that the autistic group showed hyper-arousal in response to the aversive sound and the startling sound as reflected by their larger change in pupil area. In comparison, these autistic children demonstrated normal arousal in response to the mild sound and the non-startling sound. Dynamically, the autistic group had a larger peak pupil area change than the NT group in the first trial and a normal habituation rate to the aversive sound. In summary, our results suggest hyper-arousal to aversive and startling stimuli and the role of larger initial responses in hyper-arousal in autism. Minimizing aversive and startling sensory stimuli or gradually increasing the volume of aversive auditory stimuli to allow autistic children to adapt using the principle of habituation is recommended to reduce the arousal level and problematic behaviors of autistic children.
Humans
;
Male
;
Child
;
Female
;
Acoustic Stimulation
;
Autistic Disorder/physiopathology*
;
Arousal/physiology*
;
Pupil/physiology*
;
Habituation, Psychophysiologic/physiology*
;
Auditory Perception
;
Child, Preschool
6.Corticostriatal Neurons in the Anterior Auditory Field Regulate Frequency Discrimination Behavior.
Zhao-Qun WANG ; Hui-Zhong WEN ; Tian-Tian LUO ; Peng-Hui CHEN ; Yan-Dong ZHAO ; Guang-Yan WU ; Ying XIONG
Neuroscience Bulletin 2023;39(6):962-972
The anterior auditory field (AAF) is a core region of the auditory cortex and plays a vital role in discrimination tasks. However, the role of the AAF corticostriatal neurons in frequency discrimination remains unclear. Here, we used c-Fos staining, fiber photometry recording, and pharmacogenetic manipulation to investigate the function of the AAF corticostriatal neurons in a frequency discrimination task. c-Fos staining and fiber photometry recording revealed that the activity of AAF pyramidal neurons was significantly elevated during the frequency discrimination task. Pharmacogenetic inhibition of AAF pyramidal neurons significantly impaired frequency discrimination. In addition, histological results revealed that AAF pyramidal neurons send strong projections to the striatum. Moreover, pharmacogenetic suppression of the striatal projections from pyramidal neurons in the AAF significantly disrupted the frequency discrimination. Collectively, our findings show that AAF pyramidal neurons, particularly the AAF-striatum projections, play a crucial role in frequency discrimination behavior.
Acoustic Stimulation/methods*
;
Neurons/physiology*
;
Auditory Cortex/physiology*
;
Auditory Perception
;
Pyramidal Cells
7.Neural Integration of Audiovisual Sensory Inputs in Macaque Amygdala and Adjacent Regions.
Liang SHAN ; Liu YUAN ; Bo ZHANG ; Jian MA ; Xiao XU ; Fei GU ; Yi JIANG ; Ji DAI
Neuroscience Bulletin 2023;39(12):1749-1761
Integrating multisensory inputs to generate accurate perception and guide behavior is among the most critical functions of the brain. Subcortical regions such as the amygdala are involved in sensory processing including vision and audition, yet their roles in multisensory integration remain unclear. In this study, we systematically investigated the function of neurons in the amygdala and adjacent regions in integrating audiovisual sensory inputs using a semi-chronic multi-electrode array and multiple combinations of audiovisual stimuli. From a sample of 332 neurons, we showed the diverse response patterns to audiovisual stimuli and the neural characteristics of bimodal over unimodal modulation, which could be classified into four types with differentiated regional origins. Using the hierarchical clustering method, neurons were further clustered into five groups and associated with different integrating functions and sub-regions. Finally, regions distinguishing congruent and incongruent bimodal sensory inputs were identified. Overall, visual processing dominates audiovisual integration in the amygdala and adjacent regions. Our findings shed new light on the neural mechanisms of multisensory integration in the primate brain.
Animals
;
Macaca
;
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Visual Perception/physiology*
;
Amygdala/physiology*
;
Photic Stimulation
8.The function of auditory cortex in the elderly using functional near-infrared spectroscopy technology.
Liu YANG ; You Nuo CHEN ; Song Jian WANG ; Yuan WANG ; Ting CHEN ; Ying LIANG ; Shuo WANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):458-466
Objective: Functional near-infrared spectroscopy (fNIRS) was used to study the effect of aging on the neuroimaging characteristics of cerebral cortex in the process of speech perception. Method: Thirty-four adults with normal hearing were recruited from March 2021 to June 2021, including 17 in the young group, with 6 males, 11 females, age (32.1±5.0) years, age range 20-39 years. and 17 in the elderly group, with 6 males, 11 females, age (63.2±2.8) years, age range 60-70 years. The test material was the sentence table of the Mandarin Hearing Test in Noise (MHINT). The task state block experiment design was adopted, and the temporal lobe, Broca's area, Wernicke's area, motor cortex were used as regions of interest. Objective brain imaging technology (fNIRS) combined with subjective psychophysical testing method was used to analyze the activation area and degree of cerebral cortex related to auditory speech perception in the elderly and young people under different listening conditions (quiet, signal-to-noise ratio of 10 dB, 5 dB, 0 dB, -5 dB). SPSS 23 software was used for statistical analysis. Result: The activation area and degree of activation in the elderly group were lower than those in the young group under each task condition; The number of activation channels in the young group were significantly more than those in the old group, and the number of activation channels in the left hemisphere were more than those in the right hemisphere, but there was no difference in the number of activation channels. There were more channels affected by age in the left hemisphere than in the right hemisphere. The activation degree of the young group when the signal-to-noise ratio was 0 dB was significantly higher than that of other signal-to-noise ratio conditions (P<0.05), but there was no significant difference in the old group under the five conditions (P>0.05). The speech recognition score of the young group was higher than that of the old group under all conditions. When the quiet and signal-to-noise ratio was 10 dB, the correct score of the two groups was equal or close to 100%. With the gradual decrease of signal-to-noise ratio, there was a significant difference between the two groups when the signal-to-noise ratio was 5 dB. The speech recognition accuracy of the young group decreased significantly when the signal-to-noise ratio was 0 dB, while that of the old group decreased significantly when the signal-to-noise ratio was 5 dB. Conclusions: With the increase of age, the speech perception in noisy environment and the activity of cerebral cortex gradually deteriorate, and the speech dominance hemisphere (left hemisphere) will be significantly affected by aging. The overall activation area and activation degree of the elderly under different speech tasks are lower than those of the young.
Acoustic Stimulation/methods*
;
Adolescent
;
Adult
;
Aged
;
Auditory Cortex/physiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Spectroscopy, Near-Infrared
;
Speech Perception/physiology*
;
Technology
;
Young Adult
9.Neural mechanism for modulation of auditory response of the striatum by locomotion.
Wei Long HUANG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(5):766-771
OBJECTIVE:
To explore whether the characteristic responses to sound stimulations of the auditory neurons in the striatum is regulated in different behavioral states.
METHODS:
The auditory neurons in the striatum of awake C57BL/6J mice were selected for this study. We recorded the auditory response of the striatum to noises over a long period of time by building a synchronous in vivo electrophysiological and locomotion recording system and using glass microelectrode attachment recording. By analyzing the running speed of the mice, the behavioral states of the mice were divided into the quiet state and the active state, and the spontaneous activity and evoked responses of the auditory neurons in the striatum were analyzed in these two states.
RESULTS:
Compared with those recorded in the quiet state, the spontaneous activity of the auditory neurons in the striatum of the mice increased significantly (37.06±12.02 vs 18.51±10.91, P < 0.001) while the auditory response of the neurons decreased significantly (noise intensity=60 dB, 3.45±2.99 vs 3.04±2.76, P < 0.001) in the active state.
CONCLUSION
Locomotion has a significant inhibitory effect on the auditory response of the striatum, which may importantly contribute to the decline of sound information recognition ability in the active state.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Evoked Potentials, Auditory
;
Locomotion/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Neurons
10.Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats.
Yumei GONG ; Yuying ZHAI ; Xinyu DU ; Peirun SONG ; Haoxuan XU ; Qichen ZHANG ; Xiongjie YU
Neuroscience Bulletin 2022;38(7):785-795
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception/physiology*
;
Geniculate Bodies
;
Rats
;
Rats, Wistar
;
Thalamic Nuclei/physiology*

Result Analysis
Print
Save
E-mail