1.Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii.
Wei-feng SHI ; Jian-ping JIANG ; Zu-huang MI
Chinese Medical Journal 2005;118(2):141-145
BACKGROUNDAcinetobacter baumannii is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by multi-drug resistance Acinetobacter baumannii is very difficult to treat. This study was designed to investigate the antimicrobial resistance characteristics and four resistant gene expressions of aminoglycoside-modifying enzymes including N-acetyltransferases and O-phosphotransferases in Acinetobacter baumannii.
METHODSBacterial identification and antimicrobial susceptibility test were performed by Phoenix system in 247 strains of Acinetobacter baumannii. Minimal inhibitory concentrations (MICs) of seven aminoglycosides including gentamicin, amikacin, kanamycin, tobramycin, netilmicin, neomycin and streptomycin in 15 strains of multi-drug resistant Acinetobacter baumannii were detected by agar dilution. Four aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer.
RESULTSThe resistance rates of 247 strains of Acinetobacter baumannii against cefotaxime, levofloxacin, piperacillin, aztreonam, tetracycline, ciprofloxacin and chloramphenicol were more than 50%. Imipenem and meropenem showed high antibacterial activities with resistance rates of 3.2% and 4.1%. MIC50 and MIC90 of gentamicin, amikacin, streptomycin and kanamycin in 15 strains of multi-drug resistant Acinetobacter baumanii were all more than 1024 mg/L, and the resistance rates were 100%, 100%, 100% and 93.3%, respectively. But their resistance rates to tobramycin, netilmicin and neomycin were 86.7%, 93.3% and 46.7%, respectively. Three modifying enzyme genes, including aacC1, aacC2 and aacA4 genes, were found in 15 strains, but aphA6 had not been detected. Their positive rates were 93.3%, 20.0% and 20.0%, respectively. These three genes existed simultaneously in No.19 strain. Nucleotide sequences of aacC1, aacC2 and aacA4 genes shared 100%, 97.9% and 99.7% identities with GenBank genes (AY307113, S68058 and AY307114).
CONCLUSIONMulti-drug resistant Acinetobacter baumannii strains are rapidly spreading in our hospital, and their resistance to aminoglycosides may be associated with aminoglycoside-modifying enzyme gene expressions.
Acinetobacter baumannii ; drug effects ; enzymology ; genetics ; Aminoglycosides ; metabolism ; pharmacology ; Base Sequence ; Drug Resistance, Multiple, Bacterial ; Gene Expression Regulation, Bacterial ; Genotype ; Microbial Sensitivity Tests ; Molecular Sequence Data
2.Homology and carbapenemase gene in Acinetobacter baumannii.
Qun YAN ; Shuang DENG ; Hongling LI ; Mingxiang ZOU
Journal of Central South University(Medical Sciences) 2012;37(11):1163-1170
OBJECTIVE:
To study the antibiotic resistance evolution, homology, phenotypes and genotypes of carbapenemase in Acinetobacter baumannii from clinical isolates.
METHODS:
A total of 72 strains of Acinetobacter baumannii were isolated from Xiangya Hospital of Central South University from March to May 2012. Antimicrobial susceptibility test was carried out by automatic microorganism clinical analytical system VITEK-II. The homology of the 72 strains was analyzed by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Modified Hodge test was used to screen carbapenemases of the strains. Carbapenemase genes blaOXA-23, blaOXA-40 and blaOXA-58 were also amplified and sequenced.
RESULTS:
The 72 strains of Acinetobacter baumannii remained sensitive to cefoperazone/sulbactam (resistance rate 8.33%), followed by Amikacin. Otherwise, they were resistant to most of the antimicrobial agents (resistance rate more than 70%). The 72 strains were identified as 7 epidemic clones, A-G, by means of ERIC-PCR and the phylogenetic relationship among D, E, F and G was very close, suggesting a nosocomial infection possibility. Totally 56 strains produced carbapenemase; 61 strains were positive for carbapenemase gene blaOXA-23 and 1 strain positive for blaOXA-58. All strains were negative for carbapenemase gene blaOXA-40.
CONCLUSION
Acinetobacter baumannii strains isolated clinically are resistant to most of the antimicrobial agents and nosocomial infection had been observed. Most of the strains produce carbapenemase, among which, blaOXA-23 gene is the main carbapenemase gene. blaOXA-58 gene exists in the Acinetobacter baumannii isolates from Hunan Province.
Acinetobacter Infections
;
microbiology
;
Acinetobacter baumannii
;
drug effects
;
enzymology
;
genetics
;
Anti-Bacterial Agents
;
pharmacology
;
Bacterial Proteins
;
genetics
;
Base Sequence
;
Drug Resistance, Multiple, Bacterial
;
genetics
;
Genotype
;
Humans
;
Imipenem
;
pharmacology
;
Microbial Sensitivity Tests
;
Molecular Sequence Data
;
Sequence Homology, Nucleic Acid
;
beta-Lactamases
;
genetics
3.Dissemination of IMP-1 and OXA Type beta-Lactamase in Carbapenem-resistant Acinetobacter baumannii.
Ji Youn SUNG ; Kye Chul KWON ; Jong Woo PARK ; Yeon Suk KIM ; Ji Myung KIM ; Kyeong Seob SHIN ; Jong Wan KIM ; Chi Seon KO ; So Youn SHIN ; Jeong Hoon SONG ; Sun Hoe KOO
The Korean Journal of Laboratory Medicine 2008;28(1):16-23
BACKGROUND: Acinetobacter baumannii is an aerobic, gram-negative, glucose-nonfermenting bacterium, which has emerged as a serious opportunistic pathogen. In recent years, the increasing instance of carbapenem-resistant A. baumannii producing metallo-beta-lactamases (MBLs) or OXAtype beta-lactamases is causing a serious clinical problem. In this study, we investigated the prevalence of Ambler class A, B, and D beta-lactamases and their extended-spectrum derivatives in carbapenem-resistant A. baumannii isolates. METHODS: A total of 31 consecutive, non-duplicate, carbapenem-resistant A. baumannii were isolated from three university hospitals in the Chungcheong province of Korea. The modified Hodge and inhibitor-potentiated disk diffusion tests were conducted for the screening of carbapenemase and MBL production, respectively. PCR and DNA sequencing were performed for the detection of beta-lactamase genes. We also employed the enterobacterial repetitive intergenic consensus (ERIC)-PCR method for the epidemiologic study. RESULTS: Twenty-three of 31 isolates harbored bla(OXA-2) (51.6%), bla(OXA-23) (22.6%), bla(IMP-1) (48.4%),and bla(VIM-2) (3.2%). All of the OXA-2-producing strains also evidenced MBLs. The strains that harbored bla(OXA-23) were isolated only in hospital C, and only in a limited fashion. The ERIC-PCR pattern of the five OXA-23 strains indicated that the isolates were closely related in terms of clonality. The six strains producing IMP-1 isolated from hospital A were confirmed to be identical strains. CONCLUSIONS: A. baumannii strains harboring IMP-1 or OXA-type beta-lactamases are currently widely distributed throughout the Chungcheong province of Korea. The most notable finding in this study was that a bla(OXA-2)-producing A. baumannii harboring MBL, which has not been previously reported, can also lead to outbreaks.
Acinetobacter Infections/microbiology
;
Acinetobacter baumannii/drug effects/*enzymology/genetics
;
Anti-Bacterial Agents/*pharmacology
;
Carbapenems/*pharmacology
;
Disk Diffusion Antimicrobial Tests
;
Drug Resistance, Multiple, Bacterial
;
Humans
;
Polymerase Chain Reaction
;
beta-Lactamases/biosynthesis/genetics/*metabolism
4.Analysis of the mechanism of drug resistance of VIM-2-type metallo-β-lactamase-producing Acineto- bacter baumannii isolated from burn patients and its homology.
Yang XILI ; Li YUE ; Zhan JIANHUA ; Guo FEI ; Min DINGHONG ; Wang NIANYUN ; Li GUOHUI ; Guo GUANGHUA
Chinese Journal of Burns 2015;31(3):205-210
OBJECTIVETo study the drug resistance of Acinetobacter baumannii (AB) producing VIM-2-type metallo-β-lactamase (MBL) isolated from burn patients of our ward against carbapenem antibiotics and its homology.
METHODSA total of 400 strains of AB (identified) were isolated from sputum, urine, blood, pus, and wound drainage. of burn patients hospitalized in our ward from September 2011 to March 2014. Drug resistance of the 400 strains of AB to 15 antibiotics, including compound sulfamothoxazole, aztreonam, etc. , was tested using the automatic microorganism identifying and drug sensitivity analyzer. Among the carbapenems-resistant AB isolates, modified Hodge test was applied to screen carbapenemase-producing strains. The carbapenemase genes of the carbapenemase-producing strains, and the mobile genetic elements class I-integron (Intl1) gene and conserved sequence (CS) of carbapenemase-producing strains carrying blaVIM-2 gene were determined with PCR and DNA sequencing. For carbapenemase-producing strains carrying blaVIM-2 gene, synergism test with imipenem-ethylene diamine tetraacetic acid (EDTA) and enhancement test with imipenem-EDTA and ceftazidime-EDTA were used to verify the MBL-producing status. Drug resistance of the VIM-2-type MBL-producing AB strains was analyzed. For VIM-2-type MBL-producing AB strains, plasmid conjugation experiment was used to explore the transfer of plasmid; outer membrane protein (OMP) CarO gene was detected by PCR. For VIM-2-type MBL-producing AB strains carrying CarO gene, the protein content of CarO was analyzed with sodium dodecyl sulfate polyacrylamide gel electro- phoresis. The repetitive consensus sequence of Enterobacteriaceae genome PCR (ERIC-PCR) was carried out for gene typing of VIM-2-type MBL-producing AB strains to analyze their homology.
RESULTS(1) The resistant rates of the 400 strains of AB against levofloxacin and compound sulfamethoxazole were low. A total of 381 carbapenems-resistant AB strains were screened, including 240 carbepenemase-producing strains. (2) Out of the 240 carbepenemase-producing strains, 18 strains were found to harbor the blaVIM-2 gene, accounting for 7.5%; 133 strains carried the blaTEM-1 gene, accounting for 55.42%; 195 strains carried the blaOXA23 gene, accounting for 81.25%; 188 strains carried the bla(armA) gene, accounting for 78.33%. (3) Eighteen carbepenemase-producing strains which carried the bla(VIM-2) gene were found to carry the Intl1 gene, showing the Intl1-VIM linkage. Simultaneously, Intl1 variable area CS showed diversity. (4) Eighteen carbepenemase-producing strains which carried the blaVIM-2 gene were verified to produce MBL. The resistant rates of the 18 strains of AB against compound sulfamethoxazole were the lowest, followed by levofloxacin and cefoperazone/sulbactam, and those against the other antibiotics were above 60.00%. (5) Through multiple joint tests, plasmid conjugation experiment positive transfer strain was not found in 18 VIM-2-type MBL-producing AB strains. (6) Nine out of the 18 VIM-2-type MBL-producing AB strains were found to carry CarO gene. The OMP CarO of VIM-2-type MBL-producing AB strains carrying CarO gene was lost or lowered in the protein content. (7) The 18 VIM-2-type MBL-producing AB strains were classified into 6 genotypes by the ERIC-PCR. There were respectively 6, 4, 3, and 1 stain (s) in genotypes A, B, C, and F, and there were 2 strains in genotypes D and E respectively.
CONCLUSIONSThe resistance mechanism of AB against carbapenems is mainly mediated by blaTEM-1, blaOXA-23, and bla(arma); meanwhile, VIM-2-type MBL-producing and lack or change in OMP CarO are attributable to carbapenems resistance of clinically isolated AB from burn wards, and the Intl1 gene may take a part in blaVIM-2 gene transmission.
Acinetobacter baumannii ; drug effects ; enzymology ; genetics ; isolation & purification ; Anti-Bacterial Agents ; pharmacology ; therapeutic use ; Bacterial Proteins ; Burns ; drug therapy ; microbiology ; Carbapenems ; pharmacology ; Drug Resistance, Bacterial ; Genes, Bacterial ; Humans ; Imipenem ; pharmacology ; Microbial Sensitivity Tests ; Sulbactam ; pharmacology ; beta-Lactamases ; genetics