1.Analysis of ACAT1 gene variants in a patient with β-ketothiolase deficiency.
Chuntao SUN ; Qigang ZHANG ; Lingli KONG ; Yumei WANG ; Li ZHANG
Chinese Journal of Medical Genetics 2021;38(2):166-169
OBJECTIVE:
To explore the genetic etiology of a child suspected for β-ketothiolase deficiency by neonatal screening.
METHODS:
All coding exons and flanking sequences of the ACAT1 gene were subjected to targeted capture and high-throughput sequencing. Suspected variants were verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The child was found to harbor compound heterozygous variants of the ACAT1 gene, namely c.121-3C>G and c.275G>A (p. Gly92Asp). The c.121-3C>G variant was also detected in his father and two sisters, while the c.275G>A (p. Gly92Asp) was a de novo variant. A c.334+ 172C>G (rs12226047) polymorphism was also detected in his mother and two sisters. Sanger sequencing has verified that the c.275G>A (p. Gly92Asp) and c.334+172C>G (rs12226047) variants are located on the same chromosome. Bioinformatics analysis suggested both c.121-3C>G and c.275G>A (p.G92D) variants to be damaging. Based on the American College of Medical Genetics and Genomics standards and guidelines, the c.275G>A variant of the ACAT1 gene was predicted to be pathogenic (PS2+ PM2+ PM3+ PP3+PP4), the c.121-3C>G variant to be likely pathogenic (PM2+ PM3+ PP3+PP4).
CONCLUSION
The c.121-3C>G and c.275G>A variants of the ACAT1 gene probably underlay the pathogenesis of the child. Above finding has enriched the variant spectrum of the ACAT1 gene.
Acetyl-CoA C-Acetyltransferase/genetics*
;
Acetyl-CoA C-Acyltransferase/genetics*
;
Amino Acid Metabolism, Inborn Errors/genetics*
;
Female
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Infant, Newborn
;
Male
;
Mutation
2.Analysis of clinical phenotype and ACAT1 gene mutation in a family affected with beta-ketothiolase deficiency.
Pengqiang WEN ; Zhanling CHEN ; Guobing WANG ; Zhe SU ; Xiuwei ZHANG ; Gen TANG ; Dong CUI ; Xiaohong LIU ; Chengrong LI
Chinese Journal of Medical Genetics 2016;33(3):286-291
OBJECTIVETo investigate the clinical phenotype and ACAT1 gene mutation in a family affected with beta-ketothiolase deficiency (BKTD).
METHODSClinical features and laboratory test data were collected. The probands were monozygotic twin brothers. Genomic DNA was isolated from peripheral blood leukocytes obtained from the probands and their family members. Molecular genetic testing of the ACAT1 gene was carried out.
RESULTSThe probands have presented with fever, vomiting and severe ketoacidosis. By arterial blood gas testing, pH was determined to be 7.164, bicarbonate was 4.0 mmol/L, and urine ketone was ++++. Urinary organic acid gas chromatography-mass spectrometry analysis showed excessive excretion of 3-hydroxybutyric acid, 2-methyl-3-hydroxybutyric acid and tiglylglycine. Increased 3-hydroxybutyrylcarnitine (C4-OH), tiglylcarnitine(C5:1) and 3-hydroxyisovalerylcarnitine (C5-OH) levels. The clinical phenotype of proband's parents were both normal, but an elder sister turned out to be an affected patient. Genetic analysis has identified two heterozygous mutations [c.622C>T(p.R208X) and c.653C>T (p.S218F)] in the proband, which were respectively detected in the mother and father. The c.653C>T (p.S218F) mutation was not found among the 100 healthy controls and has not been included in the Human Gene Mutation Database(HGMD).
CONCLUSIONThe primary clinical manifestations of BKTD is ketoacidosis. Urine organic acid and blood acylcarnitine analyses play an important role in the diagnosis of the disease. The compound heterozygous of ACAT1 gene mutations probably underlie the BKTD in our patient.
Acetyl-CoA C-Acetyltransferase ; genetics ; Acetyl-CoA C-Acyltransferase ; deficiency ; genetics ; Amino Acid Metabolism, Inborn Errors ; genetics ; Computational Biology ; Female ; Humans ; Infant ; Male ; Mutation ; Phenotype
3.Fermentative production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by recombinant Aeromonas hydrophila 4AK4 (pTG01).
Shao-Ping OUYANG ; Yuan-Zheng QIU ; Qiong WU ; Guo-Qiang CHEN
Chinese Journal of Biotechnology 2003;19(6):709-714
Copolyesters consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx) (PHBHHx), a new type of biodegradable material, are receiving considerable attentions recently. The material properties are strongly related to the 3HHx fraction of PHBHHx. As the 3HHx fraction increase, crystallinity and melting point of PHBHHx decrease, flexibility and tractility increase. PHBHHx of different 3HHx fraction can meet different demands of commercial application and research. Aeromonas are the best studied PHBHHx-producing strains. Recent studies have been focused on optimizations of fermentative culture media and culture conditions for low-cost and efficient fermentative production. Aliphatic substrates such as long-chain fatty acid and soybean oil were used in the PHBHHx fermentation as the sole carbon source and energy source. Two-stage fermentation method was also developed for more efficient PHBHHx production. While studies on Aeromonas hydrophila revealed that the monomer composition of PHBHHx could not easily be regulated by fermentative process engineering methods such as changing substrates and fermentative conditions because precursors involved in the PHBHHx synthesis were all from the beta-oxidation pathway. In this study, phbA gene encoding beta-ketothiolase and phbB gene encoding acetoacetyl-CoA reductase were introduced into a PHBHHx-producing strain Aeromonas hydrophila 4AK4 so as to provide a new 3HB precursors synthesis way. phbA gene encodes beta-ketothiolase which can catalyze two acetyl-CoA to form acetoacetyl-CoA; phbB gene encodes acetoacetyl-CoA reductase catalyzing acetoacetly-CoA into 3HB-CoA which is the precursor of 3HB. The introduced novel 3-hydroxybutyrate precursor synthesis pathway allowed the recombinant strain to use unrelated carbon source such as gluconate to provide 3HB precursors for PHBHHx synthesis. Shake-flask experiments were carried out to produce PHBHHx of controllable monomer composition and fermentations in 5 L fermentor were also proceeded for confirmation of these result in large-scale culture. In flask culture, it was possible to reduce the 3HHx mol fraction in PHBHHx from 15 % in the wild type to 3% - 12% in the recombinant by simply changing the ratio of gluconate to lauric acid in the culture media. When lauric acid was used as the sole carbon source, 51.5 g/L Cell Dry Weight (CDW) containing 62 % PHBHHx with 9.7 % 3HHx mol fraction was obtained in 56 hours of fermentation in a 5 liter fermentor. When co-substrates of sodium gluconate and lauric acid (1:1) were used as carbon sources, 32.8 g/L CDW containing 52 % PHBHHx with 6.7% 3HHx mol fraction was obtained in 48 hours of fermentation. These results showed the possibility for fermentative production of PHBHHx with controllable monomer composition.
3-Hydroxybutyric Acid
;
metabolism
;
Acetyl-CoA C-Acyltransferase
;
genetics
;
metabolism
;
Aeromonas hydrophila
;
enzymology
;
genetics
;
metabolism
;
Alcohol Oxidoreductases
;
genetics
;
metabolism
;
Bacterial Proteins
;
genetics
;
metabolism
;
Biotechnology
;
methods
;
Caproates
;
metabolism
;
Fermentation
;
genetics
;
physiology
;
Lauric Acids
;
metabolism