1.Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence.
Won Tae KIM ; Hyun Hee KONG ; Young Ran HA ; Yeon Chul HONG ; Hae Jin JEONG ; Hak Sun YU ; Dong Il CHUNG
The Korean Journal of Parasitology 2006;44(4):321-330
The pathogenic mechanism of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK) by Acanthamoeba has yet to be clarified. Protease has been recognized to play an important role in the pathogenesis of GAE and AK. In the present study, we have compared specific activity and cytopathic effects (CPE) of purified 33 kDa serine proteinases from Acanthamoeba strains with different degree of virulence (A. healyi OC-3A, A. lugdunensis KA/E2, and A. castellanii Neff). Trophozoites of the 3 strains revealed different degrees of CPE on human corneal epithelial (HCE) cells. The effect was remarkably reduced by adding phenylmethylsulfonylfluoride (PMSF), a serine proteinase inhibitor. This result indicated that PMSF-susceptible proteinase is the main component causing cytopathy to HCE cells by Acanthamoeba. The purified 33 kDa serine proteinase showed strong activity toward HCE cells and extracellular matrix proteins. The purified proteinase from OC-3A, the most virulent strain, demonstrated the highest enzyme activity compared to KA/E2, an ocular isolate, and Neff, a soil isolate. Polyclonal antibodies against the purified 33 kDa serine proteinase inhibit almost completely the proteolytic activity of culture supernatant of Acanthamoeba. In line with these results, the 33 kDa serine proteinase is suggested to play an important role in pathogenesis and to be the main component of virulence factor of Acanthamoeba.
Virulence Factors/isolation & purification/*metabolism
;
Virulence
;
Trophozoites/physiology
;
Substrate Specificity
;
Soil/parasitology
;
Serine Endopeptidases/isolation & purification/*metabolism
;
Humans
;
Epithelial Cells/parasitology/*pathology
;
Encephalitis
;
Cornea/cytology/parasitology/*pathology
;
Cells, Cultured
;
Animals
;
Acanthamoeba castellanii/enzymology/growth & development/pathogenicity
;
Acanthamoeba Keratitis/parasitology
;
Acanthamoeba/classification/*enzymology/growth & development/*pathogenicity
2.Short-Cut Pathway to Synthesize Cellulose of Encysting Acanthamoeba.
Eun Kyung MOON ; Hyun Hee KONG
The Korean Journal of Parasitology 2012;50(4):361-364
The mature cyst of Acanthamoeba is highly resistant to various antibiotics and therapeutic agents. Cyst wall of Acanthamoeba are composed of cellulose, acid-resistant proteins, lipids, and unidentified materials. Because cellulose is one of the primary components of the inner cyst wall, cellulose synthesis is essential to the process of cyst formation in Acanthamoeba. In this study, we hypothesized the key and short-step process in synthesis of cellulose from glycogen in encysting Acanthamoeba castellanii, and confirmed it by comparing the expression pattern of enzymes involving glycogenolysis and cellulose synthesis. The genes of 3 enzymes, glycogen phosphorylase, UDP-glucose pyrophosphorylase, and cellulose synthase, which are involved in the cellulose synthesis, were expressed high at the 1st and 2nd day of encystation. However, the phosphoglucomutase that facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate expressed low during encystation. This report identified the short-cut pathway of cellulose synthesis required for construction of the cyst wall during the encystation process in Acanthamoeba. This study provides important information to understand cyst wall formation in encysting Acanthamoeba.
Acanthamoeba castellanii/*enzymology/genetics/growth & development
;
Amebiasis/*parasitology
;
Cell Wall/*metabolism
;
Cellulose/*biosynthesis/genetics
;
Glucosyltransferases/genetics/metabolism
;
Glycogen Phosphorylase/genetics/metabolism
;
Protozoan Proteins/genetics/*metabolism
;
UTP-Glucose-1-Phosphate Uridylyltransferase/genetics/metabolism