1.Bacterial endosymbiosis within the cytoplasm of Acanthamoeba lugdunensis isolated from a contact lens storage case.
Dong Il CHUNG ; Hyun Hee KONG ; Tae Ho KIM ; Mee Yul HWANG ; Hak Sun YU ; Ho Cheol YUN ; Sung Yong SEOL
The Korean Journal of Parasitology 1997;35(2):127-133
Transmission electron microscopy of an Acanthamoeba isolate (KA/L5) from a contact lens case revealed bacterial endosymbionts within cytoplasm of the amoebae. The Acanthamoeba isolate belonged to the morphological group II. Based on the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) of 18S ribosomal RNA coding DNA (rDNA), the isolate was identified as A. lugdunensis. Strain typing by isoenzyme analysis using isoelectric focusing (IEF) and mitochondrial (Mt) DNA RFLP revealed that the isolate was closely related with KA/L1, the most predominant type of isolates from contact lens storage cases, KA/E2, a clinical isolate, KA/W4, previously reported to host endosymbionts, and L3a strains of A. lugdunensis. The endosymbionts were similar to those of KA/W4 in aspects that they were randomly distributed in both trophozoites and cysts, and were rod-shaped bacteria measuring approximately 1.38 x 0.50 microns. But the number of endosymbionts per amoeba was significantly lower than that of KA/W4. They were neither limited by phagosomal membranes nor included in lacunaelike structure.
Acanthamoeba/microbiology*
;
Acanthamoeba/cytology
;
Animal
;
Bacteria/isolation & purification*
;
Colony Count, Microbial
;
Contact Lenses*
;
Cytoplasm/microbiology
;
Symbiosis*
2.Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence.
Won Tae KIM ; Hyun Hee KONG ; Young Ran HA ; Yeon Chul HONG ; Hae Jin JEONG ; Hak Sun YU ; Dong Il CHUNG
The Korean Journal of Parasitology 2006;44(4):321-330
The pathogenic mechanism of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK) by Acanthamoeba has yet to be clarified. Protease has been recognized to play an important role in the pathogenesis of GAE and AK. In the present study, we have compared specific activity and cytopathic effects (CPE) of purified 33 kDa serine proteinases from Acanthamoeba strains with different degree of virulence (A. healyi OC-3A, A. lugdunensis KA/E2, and A. castellanii Neff). Trophozoites of the 3 strains revealed different degrees of CPE on human corneal epithelial (HCE) cells. The effect was remarkably reduced by adding phenylmethylsulfonylfluoride (PMSF), a serine proteinase inhibitor. This result indicated that PMSF-susceptible proteinase is the main component causing cytopathy to HCE cells by Acanthamoeba. The purified 33 kDa serine proteinase showed strong activity toward HCE cells and extracellular matrix proteins. The purified proteinase from OC-3A, the most virulent strain, demonstrated the highest enzyme activity compared to KA/E2, an ocular isolate, and Neff, a soil isolate. Polyclonal antibodies against the purified 33 kDa serine proteinase inhibit almost completely the proteolytic activity of culture supernatant of Acanthamoeba. In line with these results, the 33 kDa serine proteinase is suggested to play an important role in pathogenesis and to be the main component of virulence factor of Acanthamoeba.
Virulence Factors/isolation & purification/*metabolism
;
Virulence
;
Trophozoites/physiology
;
Substrate Specificity
;
Soil/parasitology
;
Serine Endopeptidases/isolation & purification/*metabolism
;
Humans
;
Epithelial Cells/parasitology/*pathology
;
Encephalitis
;
Cornea/cytology/parasitology/*pathology
;
Cells, Cultured
;
Animals
;
Acanthamoeba castellanii/enzymology/growth & development/pathogenicity
;
Acanthamoeba Keratitis/parasitology
;
Acanthamoeba/classification/*enzymology/growth & development/*pathogenicity
3.Expressed sequence tags (ESTs) analysis of Acanthamoeba healyi.
Hyun Hee KONG ; Mee Yeul HWANG ; Hyo Kyung KIM ; Dong Il CHUNG
The Korean Journal of Parasitology 2001;39(2):151-160
Randomly selected 435 clones from Acanthamoeba healyi cDNA library were sequenced and a total of 387 expressed sequence tags (ESTs) had been generated. Based on the results of BLAST search, 130 clones (34.4%) were identified as the genes encoding surface proteins, enzymes for DNA, energy production or other metabolism, kinases and phosphatases, protease, proteins for signal transduction, structural and cytoskeletal proteins, cell cycle related proteins, transcription factors, transcription and translational machineries, and transporter proteins. Most of the genes (88.5%) are newly identified in the genus Acanthamoeba. Although 15 clones matched the genes of Acanthamoeba located in the public databases, twelve clones were actin gene which was the most frequently expressed gene in this study. These ESTs of Acanthamoeba would give valuable information to study the organism as a model system for biological investigations such as cytoskeleton or cell movement, signal transduction, transcriptional and translational regulations. These results would also provide clues to elucidate factors for pathogenesis in human granulomatous amoebic encephalitis or keratitis by Acanthamoeba.
Acanthamoeba/cytology/*genetics/pathogenicity
;
Amebiasis/parasitology
;
Animals
;
DNA, Protozoan/*genetics
;
*Expressed Sequence Tags
;
Gene Library
;
Human
;
Protozoan Proteins/genetics
;
*Sequence Analysis, DNA
;
Signal Transduction
;
Support, Non-U.S. Gov't
4.Genetic diversity of Acanthamoeba isolated from ocean sediments.
Hua LIU ; Young Ran HA ; Sung Tae LEE ; Yean Chul HONG ; Hyun Hee KONG ; Dong Il CHUNG
The Korean Journal of Parasitology 2006;44(2):117-125
Genetic diversity of 18 Acanthamoeba isolates from ocean sediments was evaluated by comparing mitochondrial (mt) DNA RFLP, 18S rDNA sequences and by examining their cytopathic effects on human corneal epithelial cells versus reference strains. All isolates belonged to morphologic group II. Total of 16 restriction phenotypes of mtDNA from 18 isolates demonstrated the genetic diversity of Acanthamoeba in ocean sediments. Phylogenetic analysis using 18s rDNA sequences revealed that the 18 isolates were distinct from morphological groups I and III. Fifteen isolates showed close relatedness with 17 clinical isolates and A. castellanii Castellani and formed a lineage equivalent to T4 genotype of Byers' group. Two reference strains from ocean sediment, A. hatchetti BH-2 and A. griffini S-7 clustered unequivocally with these 15 isolates. Diversity among isolates was also evident from their cytopathic effects on human corneal cells. This is the first time describing Acanthamoeba diversity in ocean sediments in Korea.
Variation (Genetics)/*genetics
;
RNA, Ribosomal, 18S/genetics
;
Phylogeny
;
Oceans and Seas
;
Humans
;
Geologic Sediments/*parasitology
;
Epithelium, Corneal/cytology
;
Epithelial Cells/parasitology
;
DNA, Mitochondrial/genetics
;
Animals
;
Acanthamoeba/*genetics/*isolation & purification
5.Identification of Atg8 Isoform in Encysting Acanthamoeba.
Eun Kyung MOON ; Yeonchul HONG ; Dong Il CHUNG ; Hyun Hee KONG
The Korean Journal of Parasitology 2013;51(5):497-502
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.
Acanthamoeba castellanii/cytology/*genetics/physiology
;
Amebiasis/*parasitology
;
Amino Acid Sequence
;
Autophagy
;
Cell Membrane/metabolism
;
DNA, Protozoan/chemistry/genetics
;
Gene Dosage
;
Gene Silencing
;
Genes, Reporter
;
Humans
;
Molecular Sequence Data
;
Phagosomes/metabolism
;
Protein Isoforms
;
Protozoan Proteins/*genetics/metabolism
;
RNA, Messenger/genetics
;
RNA, Protozoan/genetics
;
RNA, Small Interfering/chemical synthesis/genetics
;
Recombinant Fusion Proteins
;
Sequence Alignment