1.Spectral Computed Tomography: Fundamental Principles and Recent Developments
Korean Journal of Radiology 2021;22(1):86-96
CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional singleenergy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dualenergy CT.
2.Clinical Applications of Dual-Energy CT
Saira HAMID ; Muhammad Umer NASIR ; Aaron SO ; Gordon ANDREWS ; Savvas NICOLAOU ; Sadia Raheez QAMAR
Korean Journal of Radiology 2021;22(6):970-982
Dual-energy CT (DECT) provides insights into the material properties of tissues and can differentiate between tissues with similar attenuation on conventional single-energy imaging. In the conventional CT scanner, differences in the X-ray attenuation between adjacent structures are dependent on the atomic number of the materials involved, whereas in DECT, the difference in the attenuation is dependent on both the atomic number and electron density. The basic principle of DECT is to obtain two datasets with different X-ray energy levels from the same anatomic region and material decomposition based on attenuation differences at different energy levels. In this article, we discuss the clinical applications of DECT and its potential robust improvements in performance and postprocessing capabilities.
3.CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments
Chun-Ho YUN ; Chung-Lieh HUNG ; Ming-Shien WEN ; Yung-Liang WAN ; Aaron SO
Korean Journal of Radiology 2021;22(11):1749-1763
Coronary computed tomography angiography (CCTA) is routinely used for anatomical assessment of coronary artery disease (CAD). However, invasive measurement of fractional flow reserve (FFR) is the current gold standard for the diagnosis of hemodynamically significant CAD. CT-derived FFRCT and CT perfusion are two emerging techniques that can provide a functional assessment of CAD for risk stratification and clinical decision making. Several clinical studies have shown that the diagnostic performance of concomitant CCTA and functional CT assessment for detecting hemodynamically significant CAD is at least non-inferior to that of other routinely used imaging modalities. This article aims to review the current clinical evidence and recent developments in functional CT techniques.
4.Clinical Applications of Dual-Energy CT
Saira HAMID ; Muhammad Umer NASIR ; Aaron SO ; Gordon ANDREWS ; Savvas NICOLAOU ; Sadia Raheez QAMAR
Korean Journal of Radiology 2021;22(6):970-982
Dual-energy CT (DECT) provides insights into the material properties of tissues and can differentiate between tissues with similar attenuation on conventional single-energy imaging. In the conventional CT scanner, differences in the X-ray attenuation between adjacent structures are dependent on the atomic number of the materials involved, whereas in DECT, the difference in the attenuation is dependent on both the atomic number and electron density. The basic principle of DECT is to obtain two datasets with different X-ray energy levels from the same anatomic region and material decomposition based on attenuation differences at different energy levels. In this article, we discuss the clinical applications of DECT and its potential robust improvements in performance and postprocessing capabilities.