1.Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB.
Shan SUN ; Yan GAO ; Xiaolin YANG ; Xiuna YANG ; Tianyu HU ; Jingxi LIANG ; Zhiqi XIONG ; Yuting RAN ; Pengxuan REN ; Fang BAI ; Luke W GUDDAT ; Haitao YANG ; Zihe RAO ; Bing ZHANG
Protein & Cell 2023;14(6):448-458
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.
Siderophores/metabolism*
;
Iron/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Cryoelectron Microscopy
;
Adenosine Triphosphate/metabolism*
;
ATP-Binding Cassette Transporters
2.Tanshinone IIA inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis and autophagy by regulating ABCE1.
Chinese Critical Care Medicine 2023;35(6):627-632
OBJECTIVE:
To investigate the effects of tanshinone IIA on apoptosis and autophagy induced by hypoxia/reoxygenation in H9C2 cardiomyocytes and its mechanism.
METHODS:
H9C2 cardiomyocytes in logarithmic growth phase were divided into control group, hypoxia/reoxygenation model group and tanshinone IIA low-dose, medium-dose and high-dose groups (50, 100, 200 mg/L tanshinone IIA were treated after hypoxia/reoxygenation respectively). The dose with good therapeutic effect was selected for follow-up study. The cells were divided into control group, hypoxia/reoxygenation model group, tanshinone IIA+pcDNA3.1-NC group and tanshinone IIA+pcDNA3.1-ABCE1 group. The cells were transfected with the overexpressed plasmids pcDNA3.1-ABCE1 and pcDNA3.1-NC and then treated accordingly. Cell counting kit-8 (CCK-8) was used to detect H9C2 cell activity in each group. The apoptosis rate of cardiomyocytes was detected by flow cytometry. The ATP-binding cassette transporter E1 (ABCE1), apoptosis-related proteins Bcl-2 and Bax, caspase-3, autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3II/I) and p62 mRNA expression level of H9C2 cells in each group were detected by real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The protein expression levels of the above indexes in H9C2 cells were detected by Western blotting.
RESULTS:
(1) Cell activity and ABCE1 expression: tanshinone IIA inhibited the activity of H9C2 cells induced by hypoxia/reoxygenation, and the effect was significant at medium-dose [(0.95±0.05)% vs. (0.37±0.10)%, P < 0.01], mRNA and protein expression of ABCE1 were significantly reduced [ABCE1 mRNA (2-ΔΔCt): 2.02±0.13 vs. 3.74±0.17, ABCE1 protein (ABCE1/GAPDH): 0.46±0.04 vs. 0.68±0.07, both P < 0.05]. (2) Expression of apoptosis-related proteins: medium-dose of tanshinone IIA inhibited the apoptosis of H9C2 cells induced by hypoxia/reoxygenation [apoptosis rate: (28.26±2.52)% vs. (45.27±3.07)%, P < 0.05]. Compared with the hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated the protein expression of Bax and caspase-3 in H9C2 cells induced by hypoxia/reoxygenation, and significantly up-regulated the protein expression of Bcl-2 [Bax (Bax/GAPDH): 0.28±0.03 vs. 0.47±0.03, caspase-3 (caspase-3/GAPDH): 0.31±0.02 vs. 0.44±0.03, Bcl-2 (Bcl-2/GAPDH): 0.53±0.02 vs. 0.37±0.05, all P < 0.05]. (3) Expression of autophagy-related proteins: compared with the control group, the positive rate of LC3 in the hypoxia/reoxygenation model group was significantly increased, while the positive rate of LC3 in the medium-dose of tanshinone IIA group was significantly decreased [(20.67±3.09)% vs. (42.67±3.86)%, P < 0.01]. Compared with hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated Beclin-1, LC3II/I and p62 protein expressions [Beclin-1 (Beclin-1/GAPDH): 0.27±0.05 vs. 0.47±0.03, LC3II/I ratio: 0.24±0.05 vs. 0.47±0.04, p62 (p62/GAPDH): 0.21±0.03 vs. 0.48±0.02, all P < 0.05]. (4) Expression of apoptosis and autophagy related proteins after transfection with overexpressed ABCE1 plasmid: compared with tanshinone IIA+pcDNA3.1-NC group, the protein expression levels of Bax, caspase-3, Beclin-1, LC3II/I and p62 in tanshinone IIA+pcDNA3.1-ABCE1 group were significantly up-regulated, while the protein expression level of Bcl-2 was significantly down-regulated.
CONCLUSIONS
100 mg/L tanshinone IIA could inhibit autophagy and apoptosis of cardiomyocytes by regulating the expression level of ABCE1. So, it protects H9C2 cardiomyocytes injury induced by hypoxia/reoxygenation.
Humans
;
Apoptosis
;
ATP-Binding Cassette Transporters/metabolism*
;
Autophagy
;
bcl-2-Associated X Protein/metabolism*
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Follow-Up Studies
;
Myocytes, Cardiac
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Hypoxia
3.Advances in bacterial adsorption and transport of aromatic compounds.
Yinming XU ; Huiping REN ; Kai TIAN ; Zhiliang YU ; Qiu MENG
Chinese Journal of Biotechnology 2023;39(3):961-977
Aromatic compounds are a class of organic compounds with benzene ring(s). Aromatic compounds are hardly decomposed due to its stable structure and can be accumulated in the food cycle, posing a great threat to the ecological environment and human health. Bacteria have a strong catabolic ability to degrade various refractory organic contaminants (e.g., polycyclic aromatic hydrocarbons, PAHs). The adsorption and transportation are prerequisites for the catabolism of aromatic compounds by bacteria. While remarkable progress has been made in understanding the metabolism of aromatic compounds in bacterial degraders, the systems responsible for the uptake and transport of aromatic compounds are poorly understood. Here we summarize the effect of cell-surface hydrophobicity, biofilm formation, and bacterial chemotaxis on the bacterial adsorption of aromatic compounds. Besides, the effects of outer membrane transport systems (such as FadL family, TonB-dependent receptors, and OmpW family), and inner membrane transport systems (such as major facilitator superfamily (MFS) transporter and ATP-binding cassette (ABC) transporter) involved in the membrane transport of these compounds are summarized. Moreover, the mechanism of transmembrane transport is also discussed. This review may serve as a reference for the prevention and remediation of aromatic pollutants.
Humans
;
Adsorption
;
Bacteria/metabolism*
;
Organic Chemicals
;
Biological Transport
;
ATP-Binding Cassette Transporters
;
Polycyclic Aromatic Hydrocarbons/metabolism*
4.Progress of studies on ATP-binding cassette transporters and transportation of secondary metabolites in medicinal plants.
Ning LIU ; Hai SUN ; Zheng-Bo LIU ; Cai SHAO ; Lin-Lin ZHANG
China Journal of Chinese Materia Medica 2021;46(1):52-56
ATP-binding cassette(ABC) transporters are one of the largest protein families in organisms, with important effects in regulating plant growth and development, root morphology, transportation of secondary metabolites and resistance of stress. Environmental stress promotes the biosynthesis and accumulation of secondary metabolites, which determines the quality of medicinal plants. Therefore, how to improve the accumulation of secondary metabolites has been a hotspot in studying medicinal plants. Many studies have showed that ABC transporters are extremely related to the transportation and accumulation of secondary metabolites in plants. Recently, with the great development of genomics and transcriptomic sequencing technology, the regulatory mechanisms of ABC transporters on secondary metabolites have attached great attentions in medicinal plants. This paper reviewed the mechanisms of different groups of ABC transporters in transporting secondary metabolites through cell membranes. This paper provided key theoretical basis and technical supports in studying the mechanisms of ABC transporters in medicinal plant, and promoting the accumulation of secondary metabolites, in order to improve the quality of medicinal plants.
ATP-Binding Cassette Transporters/metabolism*
;
Biological Transport
;
Plant Development
;
Plants, Medicinal/metabolism*
;
Stress, Physiological
5.Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Hong-Zhuo SHI ; Wen-Qiang CHANG ; Ming ZHANG ; Hong-Xiang LOU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):209-217
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
ATP-Binding Cassette Transporters
;
genetics
;
metabolism
;
Antifungal Agents
;
chemistry
;
metabolism
;
pharmacology
;
Azoles
;
pharmacology
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Candida albicans
;
chemistry
;
drug effects
;
metabolism
;
Cell Membrane
;
chemistry
;
metabolism
;
Coculture Techniques
;
Drug Resistance, Fungal
;
drug effects
;
Ergosterol
;
metabolism
;
Fungal Proteins
;
genetics
;
metabolism
;
Lipids
;
chemistry
;
Molecular Structure
;
Permeability
;
Phenyl Ethers
;
chemistry
;
metabolism
;
pharmacology
;
Sterols
;
chemistry
;
metabolism
;
Stilbenes
;
chemistry
;
metabolism
;
pharmacology
;
Triterpenes
;
chemistry
;
metabolism
;
pharmacology
6.All-trans-retinoic acid generation is an antidotal clearance pathway for all-trans-retinal in the retina.
Qing-Qing XIA ; Ling-Min ZHANG ; Ying-Ying ZHOU ; Ya-Lin WU ; Jie LI
Journal of Zhejiang University. Science. B 2019;20(12):960-971
The present study was designed to analyze the metabolites of all-trans-retinal (atRal) and compare the cytotoxicity of atRal versus its derivative all-trans-retinoic acid (atRA) in human retinal pigment epithelial (RPE) cells. We confirmed that atRA was produced in normal pig neural retina and RPE. The amount of all-trans-retinol (atROL) converted from atRal was about 2.7 times that of atRal-derived atRA after incubating RPE cells with 10 μmol/L atRal for 24 h, whereas atRA in medium supernatant is more plentiful (91 vs. 29 pmol/mL), suggesting that atRA conversion facilitates elimination of excess atRal in the retina. Moreover, we found that mRNA expression of retinoic acid-specific hydroxylase CYP26b1 was dose-dependently up-regulated by atRal exposure in RPE cells, indicating that atRA inactivation may be also initiated in atRal-accumulated RPE cells. Our data show that atRA-caused viability inhibition was evidently reduced compared with the equal concentration of its precursor atRal. Excess accumulation of atRal provoked intracellular reactive oxygen species (ROS) overproduction, heme oxygenase-1 (HO-1) expression, and increased cleaved poly(ADP-ribose) polymerase 1 (PARP1) expression in RPE cells. In contrast, comparable dosage of atRA-induced oxidative stress was much weaker, and it could not activate apoptosis in RPE cells. These results suggest that atRA generation is an antidotal metabolism pathway for atRal in the retina. Moreover, we found that in the eyes of ABCA4-/-RDH8-/- mice, a mouse model with atRal accumulation in the retina, the atRA content was almost the same as that in the wild type. It is possible that atRal accumulation simultaneously and equally promotes atRA synthesis and clearance in eyes of ABCA4-/-RDH8-/- mice, thus inhibiting the further increase of atRA in the retina. Our present study provides further insights into atRal clearance in the retina.
ATP-Binding Cassette Transporters/physiology*
;
Alcohol Oxidoreductases/physiology*
;
Animals
;
Cell Survival/drug effects*
;
Cells, Cultured
;
Humans
;
Inactivation, Metabolic
;
Mice
;
Retina/metabolism*
;
Retinal Pigment Epithelium/metabolism*
;
Swine
;
Tretinoin/pharmacology*
7.Pharmacokinetics mechanism of ABC efflux proteins-mediated seven features of compatibility.
Shen-Shen YANG ; An-Li LIU ; Lan-Lan SHAN ; Tong-Chun ZENG ; Qian ZHOU ; Yu-Bo LI
China Journal of Chinese Materia Medica 2018;43(4):676-683
ABC efflux proteins are a kind of transporters mediating diversified endogenous and exogenous efflux protein substrates across the plasma membrane by depending on the chemical energy released by ATP hydrolysis. As a vitally important functional membrane, it is widely found in various tissues and organs. The drug changes the expressions and/or functions of the transport proteins, which will affect the disposal process of substrate drugs corresponding to transporters , and finally lead to the pharmacokinetic interactions. The efflux proteins take part in the absorption, distribution, metabolism and excretion of drugs, and mainly consist of P-glycoprotein(P-gp), multidrug resistance associated protein(MRP) and breast cancer resistance protein(BCRP). The induction effect or inhibition effect of drugs on efflux protein plays a greatly significant role in the drug interaction produced by the compatibility of traditional Chinese medicine, which may be one of the important mechanisms of the theory of seven features of compatibility. In this article, the effects of seven features of compatibility on the ABC efflux transporters were reviewed, in order to reveal the roles of efflux protein in the herb-pairs compatibility, and provide new ideas for the mechanism and rationality of herb compatibility.
ATP-Binding Cassette Transporters
;
metabolism
;
Drug Interactions
;
Humans
;
Medicine, Chinese Traditional
;
Multidrug Resistance-Associated Proteins
;
metabolism
;
Plant Preparations
;
pharmacology
8.Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases.
Xiaojing JIANG ; Xiuzhu SUN ; Weihua DU ; Haisheng HAO ; Xueming ZHAO ; Dong WANG ; Huabin ZHU ; Yan LIU
Chinese Journal of Medical Genetics 2016;33(4):564-568
Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.
ATP-Binding Cassette Transporters
;
genetics
;
DNA-Binding Proteins
;
genetics
;
Homeostasis
;
Humans
;
Lung Diseases
;
genetics
;
Pulmonary Surfactant-Associated Protein C
;
genetics
;
Pulmonary Surfactants
;
metabolism
;
Transcription Factors
9.Thermodynamics of ABC transporters.
Xuejun C ZHANG ; Lei HAN ; Yan ZHAO
Protein & Cell 2016;7(1):17-27
ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.
ATP-Binding Cassette Transporters
;
physiology
;
Adenosine Triphosphate
;
metabolism
;
Animals
;
Humans
;
Models, Theoretical
;
Thermodynamics
10.Role and clinical significance of RLIP76 in regulation of multi-drug resistance of small cell lung cancer.
Pan HAIXIA ; Bai YIFENG ; Hu HONGLIN
Chinese Journal of Oncology 2015;37(4):266-271
OBJECTIVETo investigate the role of RLIP76 in regulating multi-drug resistance in small cell lung cancer (SCLC), and to analyze the relationship between its expression and prognosis.
METHODSThe expressions of RLIP76 protein and gene were detected by Western blotting and real-time PCR (RT-PCR) in both the chemosensitive SCLC H69 cell line and chemoresistant H69AR cell line, respectively. siRNA was transfected into the H69AR cells to inhibit RLIP76 expression, and eGFP-RLIP76 was transfected into the H69 cells to enhance RLIP76 expression. The drug-sensitivity of cells to chemotherapeutic drugs (ADM, DDP, VP-16) were detected by CCK8 assay. The expression of RLIP76 in the SCLC tissues was detected by immunohistochemistry. The relationship of RLIP76 expression with clinicopathological features and prognosis of the patients was analyzed.
RESULTSThe expression of RLIP76 in H69AR cells was 13.675 ± 0.983, significantly higher than 1.074 ± 0.107 in the H69 cells (P < 0.01). The drug-sensitivities of H69AR cells to chemotherapeutic drugs were significantly increased when the expression of RLIP76 was down-regulated (P< 0.001). The sensitivities of H69 cells to chemotherapeutic drugs ADM, DDP and VP-16 were significantly decreased after transfection with eGFP-RLIP76 up-regulating the RLIP76 expression (P = 0.003). The positive expression rates were 61.3% and 9.4% in the SCLC tumor tissues and para-cancerous tissues, respectively (P < 0.01). The expression of RLIP76 was significantly correlated with clinical stage, chemosensitivity and overall survival of the SCLC patients (P < 0.05).
CONCLUSIONSOur results suggest that RLIP76 is involved in the regulation of small cell lung cancer multidrug resistance. RLIP76 may serve as a potential target gene to evaluate the chemosensitivity and clinical prognostic for small cell lung cancer.
ATP-Binding Cassette Transporters ; metabolism ; physiology ; Antineoplastic Agents ; pharmacology ; Cisplatin ; pharmacology ; Down-Regulation ; Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; Etoposide ; pharmacology ; GTPase-Activating Proteins ; metabolism ; physiology ; Humans ; Lung Neoplasms ; drug therapy ; metabolism ; RNA, Small Interfering ; Real-Time Polymerase Chain Reaction ; Small Cell Lung Carcinoma ; drug therapy ; metabolism ; Transfection ; Up-Regulation

Result Analysis
Print
Save
E-mail