1.Effects and mechanism of p53 gene deletion on energy metabolism during the pluripotent transformation of spermatogonial stem cells.
Hong-Yang LIU ; Rui WEI ; Xiao-Xiao LI ; Kang ZOU
Acta Physiologica Sinica 2023;75(1):17-26
Previous studies have shown that long-term spermatogonial stem cells (SSCs) have the potential to spontaneously transform into pluripotent stem cells, which is speculated to be related to the tumorigenesis of testicular germ cells, especially when p53 is deficient in SSCs which shows a significant increase in the spontaneous transformation efficiency. Energy metabolism has been proved to be strongly associated with the maintenance and acquisition of pluripotency. Recently, we compared the difference in chromatin accessibility and gene expression profiles between wild-type (p53+/+) and p53 deficient (p53-/-) mouse SSCs using the Assay for Targeting Accessible-Chromatin with high-throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) techniques, and revealed that SMAD3 is a key transcription factor in the transformation of SSCs into pluripotent cells. In addition, we also observed significant changes in the expression levels of many genes related to energy metabolism after p53 deletion. To further reveal the role of p53 in the regulation of pluripotency and energy metabolism, this paper explored the effects and mechanism of p53 deletion on energy metabolism during the pluripotent transformation of SSCs. The results of ATAC-seq and RNA-seq from p53+/+ and p53-/- SSCs revealed that gene chromatin accessibility related to positive regulation of glycolysis and electron transfer and ATP synthesis was increased, and the transcription levels of genes encoding key glycolytic enzymes and regulating electron transport-related enzymes were markedly increased. Furthermore, transcription factors SMAD3 and SMAD4 promoted glycolysis and energy homeostasis by binding to the chromatin of the Prkag2 gene which encodes the AMPK subunit. These results suggest that p53 deficiency activates the key enzyme genes of glycolysis in SSCs and enhances the chromatin accessibility of genes associated with glycolysis activation to improve glycolysis activity and promote transformation to pluripotency. Moreover, SMAD3/SMAD4-mediated transcription of the Prkag2 gene ensures the energy demand of cells in the process of pluripotency transformation and maintains cell energy homeostasis by promoting AMPK activity. These results shed light on the importance of the crosstalk between energy metabolism and stem cell pluripotency transformation, which might be helpful for clinical research of gonadal tumors.
Animals
;
Mice
;
AMP-Activated Protein Kinases
;
Chromatin
;
Energy Metabolism
;
Gene Deletion
;
Stem Cells
;
Tumor Suppressor Protein p53/genetics*
;
Spermatogonia/cytology*
;
Male
2.Methyl ferulic acid ameliorates ethanol-induced L02 cell steatosis through microRNA-378b-mediated CaMKK2-AMPK pathway.
Ping HUANG ; Xing CHEN ; Rong-Hua MENG ; Jun LU ; Yan ZHANG ; Li LI ; Yong-Wen LI
China Journal of Chinese Materia Medica 2023;48(1):193-201
Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.
Humans
;
Ethanol/toxicity*
;
AMP-Activated Protein Kinases/metabolism*
;
Fatty Liver
;
Triglycerides
;
MicroRNAs/genetics*
;
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics*
3.Difference of lipid-lowering efficacy of "Xinjianqu" before and after fermentation and its mechanism based on LKB1-AMPK pathway and 16S rDNA sequencing technology.
De-Hua LI ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Jian-Guang ZHU ; Meng-Mei SUN ; Jia QIAO
China Journal of Chinese Materia Medica 2023;48(8):2146-2159
On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Rats, Sprague-Dawley
;
Cholesterol, LDL
;
Fermentation
;
Aquaporin 2/metabolism*
;
Lipid Metabolism
;
Liver
;
Lipids
;
Hyperlipidemias/genetics*
;
Adenosine Triphosphate/pharmacology*
;
Diet, High-Fat/adverse effects*
4.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Nerve Growth Factor/metabolism*
;
Diabetes Mellitus, Experimental/drug therapy*
;
TRPM Cation Channels/metabolism*
;
GAP-43 Protein/metabolism*
;
Signal Transduction
;
Diabetic Neuropathies/genetics*
;
Fibrosis
5.Punicalagin inhibits hepatic lipid deposition in obese mice via AMPK/ACC pathway.
Re-Na JIENSI ; Zhan-Ying CHANG ; Ruo-Hui NIU ; Xiao-Li GAO
China Journal of Chinese Materia Medica 2023;48(7):1751-1759
Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.
Rats
;
Mice
;
Animals
;
Mice, Obese
;
AMP-Activated Protein Kinases/metabolism*
;
PPAR gamma/metabolism*
;
Mice, Inbred C57BL
;
Liver/metabolism*
;
Obesity/genetics*
;
Body Weight
;
Lipid Metabolism
;
Diet, High-Fat/adverse effects*
;
Lipids
;
Cholesterol
6.Eucommia lignans alleviate the progression of diabetic nephropathy through mediating the AR/Nrf2/HO-1/AMPK axis in vivo and in vitro.
Qi HUANG ; Yinfan ZHANG ; Yueping JIANG ; Ling HUANG ; Qiong LIU ; Dongsheng OUYANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):516-526
Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.
Animals
;
Rats
;
AMP-Activated Protein Kinases/genetics*
;
Diabetes Mellitus
;
Diabetic Nephropathies/prevention & control*
;
Eucommiaceae/metabolism*
;
Lignans/therapeutic use*
;
Molecular Docking Simulation
;
NF-E2-Related Factor 2/metabolism*
;
Tandem Mass Spectrometry
7.Mechanism of Zexie Decoction in improvement of nonalcoholic fatty liver disease based on LKB1/AMPK/PGC-1α pathway.
Meng-Yao WANG ; Gai GAO ; Er-Wen LI ; Xiao-Wei ZHANG ; Hui WANG ; Jiang-Yan XU ; Zhen-Qiang ZHANG ; Pan WANG ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2022;47(2):453-460
The present study investigated the pharmaceutical effect and underlying mechanism of Zexie Decoction(ZXD) on nonalcoholic fatty liver disease(NAFLD) in vitro and in vivo via the LKB1/AMPK/PGC-1α pathway based on palmitic acid(PA)-induced lipid accumulation model and high-fat diet(HFD)-induced NAFLD model in mice. As revealed by the MTT assay, ZXD had no effect on HepG2 activity, but dose-dependently down-regulated alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver cell medium induced by PA, and decreased the plasma levels of ALT and AST, and total cholesterol(TC) and triglyceride(TG) levels in the liver. Nile red staining showed PA-induced intracellular lipid accumulation, significantly increased lipid accumulation of hepatocytes induced by PA, suggesting that the lipid accumulation model in vitro was properly induced. ZXD could effectively improve the lipid accumulation of hepatocytes induced by PA. Oil red O staining also demonstrated that ZXD improved the lipid accumulation in the liver of HFD mice. JC-1 staining for mitochondrial membrane potential indicated that ZXD effectively reversed the decrease in mitochondrial membrane potential caused by hepatocyte injury induced by PA, activated PGC-1α, and up-regulated the expression of its target genes, such as ACADS, CPT-1α, CPT-1β, UCP-1, ACSL-1, and NRF-1. In addition, as revealed by the Western blot and immunohistochemistry, ZXD up-regulated the protein expression levels of LKB1, p-AMPK, p-ACC, and PGC-1α in vivo and in vitro. In conclusion, ZXD can improve NAFLD and its mechanism may be related to the regulation of the LKB1/AMPK/PGC-1α pathway.
AMP-Activated Protein Kinases/metabolism*
;
Alanine Transaminase/metabolism*
;
Animals
;
Diet, High-Fat
;
Liver/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
8.Relationship of PI3K-Akt/mTOR/AMPK signaling pathway genetic mutation with efficacy and prognosis in nasopharyngeal carcinoma.
Yanzhu CHEN ; Qian HE ; Hongzhi MA ; Lin ZHANG ; Feng LIU ; Yaqian HAN
Journal of Central South University(Medical Sciences) 2022;47(2):165-173
OBJECTIVES:
Genetic mutation is one of the important causes for tumor genesis and development, but genetic mutation in nasopharyngeal carcinoma (NPC) has rarely been reported. This study explored the role of phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR), and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway in the efficacy and prognosis in patients with NPC.
METHODS:
A total of 31 patients with advanced NPC, who came from the Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University/Hunan Provincial Cancer Hospital, were enrolled. All of the exons of 288 genes, introns of 38 genes and promoters or fusion breakpoint regions from the nasopharyngeal biopsy tissues before treatment were detected by the gene sequencing platform Illumina NextSeq CN500. The coding regions of 728 genes were carried out a high-depth sequencing of target region capture, and the 4 variant types of tumor genes (including point mutations, insertion deletions of small fragments, copy number variations, and currently known fusion genes) were detected. All of 31 patients received platinum-based induction chemotherapy combined with concurrent chemoradiotherapy and were followed up for a long time.
RESULTS:
The 3-year regional failure-free survival (RFFS) and disease-free survival (DFS) in patients with PI3K-Akt pathway mutation were significantly lower than those in unmutated patients (χ2=6.647, P<0.05). The 3-year RFFS and DFS in patients with mTOR pathway mutations were significantly lower than those in unmutated patients, and there was significant difference (χ2=5.570, P<0.05). The rate of complete response (CR) in patients with unmutated AMPK pathway was significantly higher than that in patients with mutation at 3 months after treatment (P<0.05), and the 3-year RFFS and DFS in patients with AMPK pathway mutation were significantly lower than those in unmutated patients (χ2=4.553, P<0.05). PI3K-Akt/mTOR/AMPK signaling pathway mutations and pre-treatment EB virus DNA copy numbers were independent prognostic factors for 3-year RFFS and DFS in patients with NPC (both P<0.05).
CONCLUSIONS
The NPC patients with PI3K-Akt/mTOR/AMPK signaling pathway mutation have poor prognosis, and the detection of PI3K-Akt, mTOR, AMPK driver genes and signaling pathways by next-generation sequencing is expected to provide new idea for basic research and targeted therapy of NPC.
AMP-Activated Protein Kinases/metabolism*
;
DNA Copy Number Variations
;
Humans
;
Mutation
;
Nasopharyngeal Carcinoma/genetics*
;
Nasopharyngeal Neoplasms/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prognosis
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Sirolimus
;
TOR Serine-Threonine Kinases/metabolism*
9.EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells.
Bing-Xin DU ; Pei LIN ; Jun LIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):290-300
Catechins have been proven to exert antitumor effects in different kinds of cancers. However, the underlying mechanisms have not been completely clarified yet. This study aimed to assess the effects and mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) on human melanoma skin A375 cells. Results showed that EGCG and ECG inhibited the proliferation of A375 cells and ECG showed better inhibitory effect. Flow cytometry analysis had shown that EGCG and ECG induced apoptosis and led to cell cycle arrest. EGCG and ECG decreased Bcl-2 expression and upregulated Caspase-3 protein level, indicating the development of apoptosis. Furthermore, EGCG and ECG could decreased mitochondrial membrane potential of A375 cells. In addition, the expression of Beclin-1, LC3 and Sirt3 were downregulated at protein levels, which known to be associated with autophagy. After autophagy was increased by rapamycin, the apoptotic trend was not change, indicating that apoptosis and autophagy are independent. Mechanistically, EGCG and ECG treatments decreased phosphorylated-AMPK (p-AMPK) and increased the ratios of p-PI3K, p-AKT and p-mTOR in melanoma cells. Conclusively, EGCG and ECG induced apoptosis via mitochondrial signaling pathway, downregulated autophagy through modulating the AMPK/mTOR and PI3K/AKT/mTOR signaling pathway. It indicated that EGCG and ECG may be utilized in human melanoma treatment.
AMP-Activated Protein Kinases/genetics*
;
Apoptosis
;
Autophagy
;
Catechin/analogs & derivatives*
;
Electrocardiography
;
Humans
;
Melanoma/drug therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
10.Globular adiponectin-mediated vascular remodeling by affecting the secretion of adventitial-derived tumor necrosis factor-α induced by urotensin II.
Jun LI ; Limin LUO ; Yonggang ZHANG ; Xiao DONG ; Shuyi DANG ; Xiaogang GUO ; Wenhui DING
Journal of Zhejiang University. Science. B 2022;23(12):1014-1027
OBJECTIVES:
In this study, we explored how adiponectin mediated urotensin II (UII)-induced tumor necrosis factor-α (TNF-α) and α-smooth muscle actin (α-SMA) expression and ensuing intracellular signaling pathways in adventitial fibroblasts (AFs).
METHODS:
Growth-arrested AFs and rat tunica adventitia of vessels were incubated with UII and inhibitors of signal transduction pathways for 1‒24 h. The cells were then harvested for TNF-α receptor (TNF-α-R) messenger RNA (mRNA) and TNF-α protein expression determination by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Adiponectin and adiponectin receptor (adipoR) expression was measured by RT-PCR, quantitative real-time PCR (qPCR), immunohistochemical analysis, and cell counting kit-8 (CCK-8) cell proliferation experiments. We then quantified TNF-α and α-SMA mRNA and protein expression levels by qPCR and immunofluorescence (IF) staining. RNA interference (RNAi) was used to explore the function of the adipoR genes. To investigate the signaling pathway, we applied western blotting (WB) to examine phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). In vivo, an adiponectin (APN)-knockout (APN-KO) mouse model mimicking adventitial inflammation was generated to measure TNF-α and α-SMA expression by application of qPCR and IF, with the goal of gaining a comprehensive atlas of adiponectin in vascular remodeling.
RESULTS:
In both cells and tissues, UII promoted TNF-α protein and TNF-α-R secretion in a dose- and time-dependent manner via Rho/protein kinase C (PKC) pathway. We detected marked expression of adipoR1, T-cadherin, and calreticulin as well as a moderate presence of adipoR2 in AFs, while no adiponectin was observed. Globular adiponectin (gAd) fostered the growth of AFs, and acted in concert with UII to induce α-SMA and TNF-α through the adipoR1/T-cadherin/calreticulin/AMPK pathway. In AFs, gAd and UII synergistically induced AMPK phosphorylation. In the adventitial inflammation model, APN deficiency up-regulated the expression of α-SMA, UII receptor (UT), and UII while inhibiting TNF-α expression.
CONCLUSIONS
From the results of our study, we can speculate that UII induces TNF-α protein and TNF-α-R secretion in AFs and rat tunica adventitia of vessels via the Rho and PKC signal transduction pathways. Thus, it is plausible that adiponectin is a major player in adventitial progression and could serve as a novel therapeutic target for cardiovascular disease administration.
Mice
;
Rats
;
Animals
;
Adventitia/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Calreticulin/metabolism*
;
Vascular Remodeling
;
AMP-Activated Protein Kinases/metabolism*
;
Cells, Cultured
;
RNA, Messenger/genetics*
;
Inflammation

Result Analysis
Print
Save
E-mail