1.Glucocorticoids up-regulate human chorion 11beta-hydroxysteroid dehydrogenase type 1.
Chinese Journal of Applied Physiology 2003;19(3):291-294
AIMTo study the co-localization of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and to investigate whether glucocorticoids regulate the reductase activity and expression of 11beta-HSD1.
METHODSImmunohistochemical staining for 11beta-HSD1 in cultured primary human chorionic trophoblasts was performed. Radiometric conversion assay and Northern blot analysis were respectively used to observe the activity and mRNA expression of 11beta-HSD1.
RESULTS11beta-HSD1 and GR were co-expressed in the same chorionic trophoblast. Both 11beta-HSD1 reductase activity and mRNA levels were increased by dexamethasone (10(-6) mol/L, 10(-7) mol/L) in the cultured chorionic trophoblasts, and the effects were blocked by GR antagonist RU486 (10(-6) mol/L).
CONCLUSIONBy binding to GR, glucocorticoids induce the expression of 11beta-HSD1 by a possible intracrine mechanism.
11-beta-Hydroxysteroid Dehydrogenase Type 1 ; metabolism ; Cells, Cultured ; Chorion ; drug effects ; metabolism ; Female ; Glucocorticoids ; pharmacology ; Humans ; RNA, Messenger ; genetics ; Up-Regulation ; drug effects
2.Terpenoids and sterols from Ricinus communis and their activities against diabetes.
Shen-Hua LI ; Qing DENG ; Li ZHU ; Chun-Hua LAI ; Heng-Shan WANG ; Qin-Gang TAN
China Journal of Chinese Materia Medica 2014;39(3):448-452
Seven terpenoids and three sterols were isolated from the methanol extracts of the aerial parts of Ricinus communis by chromatography methods and their structures were identified by spectra analysis as ficusic acid( 1), phytol(2), callyspinol(3) , lupeol(4), 30-norlupan-3beta-ol-20-one(5) , lup-20(29)-en-3beta,15alpha-diol(6) , acetylaleuritolic acid( 7), stigmast4-en-3-one(8) , stig-mast-4-en-6beta-ol-3-one(9) , and stigmast4-en-3,6-dione(10). Compounds 1-3 and 5-10 were obtained from this species for the first time and 5 and 6 showed significant inhibitive activity and good selectivity against 11beta-HSD of mouse and human in vitro. [Key words] Ricinus communis; terpenoids; sterols; 11beta-HSD
11-beta-Hydroxysteroid Dehydrogenase Type 1
;
antagonists & inhibitors
;
11-beta-Hydroxysteroid Dehydrogenase Type 2
;
antagonists & inhibitors
;
Animals
;
Diabetes Mellitus
;
drug therapy
;
enzymology
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
therapeutic use
;
Inhibitory Concentration 50
;
Mice
;
Ricinus
;
chemistry
;
Sterols
;
pharmacology
;
therapeutic use
;
Terpenes
;
pharmacology
;
therapeutic use
3.Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages.
Seulmee SHIN ; Sungwon LEE ; Jeonghak KWON ; Sunhee MOON ; Seungjeong LEE ; Chong Kil LEE ; Kyunghae CHO ; Nam Joo HA ; Kyungjae KIM
Immune Network 2009;9(3):98-105
BACKGROUND: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. METHODS: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. RESULTS: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as 11beta-HSD1 and PPARgamma were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-kappaB activation in LPS-activated macrophages. CONCLUSION: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-kappaB dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.
11-beta-Hydroxysteroid Dehydrogenase Type 1
;
Agaricales
;
Blotting, Western
;
Cordyceps
;
Cytokines
;
Deoxyadenosines
;
Immune System
;
Inflammation
;
Intercellular Adhesion Molecule-1
;
Interleukin-6
;
Macrophages
;
Metabolic Diseases
;
NF-kappa B
;
PPAR gamma
;
RNA, Messenger
;
Tumor Necrosis Factor-alpha
4.Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice.
Eunju SHIN ; Kyu Suk SHIM ; Hyunseok KONG ; Sungwon LEE ; Seulmee SHIN ; Jeunghak KWON ; Tae Hyung JO ; Young In PARK ; Chong Kil LEE ; Kyungjae KIM
Immune Network 2011;11(1):59-67
BACKGROUND: Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. METHODS: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. RESULTS: Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1beta, -6, -12, TNF-alpha) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARgamma/LXRalpha and 11beta-HSD1 both in the liver and WAT. CONCLUSION: Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARgamma and 11beta-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.
11-beta-Hydroxysteroid Dehydrogenase Type 1
;
Aloe
;
Animals
;
Blood Glucose
;
Blotting, Western
;
Cytokines
;
Diabetes Mellitus, Type 2
;
Diet
;
Diet, High-Fat
;
Fasting
;
Glucose
;
Humans
;
Hyperglycemia
;
Hyperlipidemias
;
Inflammation
;
Insulin
;
Insulin Resistance
;
Liver
;
Macrophages
;
Male
;
Mice
;
Mice, Obese
;
Obesity
;
Plasma
;
PPAR gamma
;
RNA, Messenger
;
Thiazolidinediones
;
Triglycerides
5.Combination of fenofibrate and rosiglitazone synergistically ameliorate dyslipidemia and insulin resistance in mice with MSG metabolic syndrome.
Wei CHEN ; Li-Hong ZHANG ; Hong-Ying LIU ; Xin-Bo ZHOU ; Li-Li WANG
Acta Pharmaceutica Sinica 2010;45(11):1459-1466
11-beta-Hydroxysteroid Dehydrogenase Type 1
;
genetics
;
metabolism
;
Adipose Tissue, White
;
drug effects
;
Animals
;
Animals, Newborn
;
Blood Glucose
;
metabolism
;
Body Weight
;
drug effects
;
Drug Synergism
;
Eating
;
drug effects
;
Fenofibrate
;
pharmacology
;
Hypoglycemic Agents
;
pharmacology
;
Hypolipidemic Agents
;
pharmacology
;
Insulin Resistance
;
Lipids
;
blood
;
Lipoprotein Lipase
;
genetics
;
metabolism
;
Liver
;
drug effects
;
Metabolic Syndrome
;
chemically induced
;
metabolism
;
pathology
;
Mice
;
Mice, Inbred ICR
;
RNA, Messenger
;
metabolism
;
Sodium Glutamate
;
Thiazolidinediones
;
pharmacology
6.Effect of 11β-HSD1 dehydrogenase activity on bone histomorphometry of glucocorticoid-induced osteoporotic male Sprague-Dawley rats.
M R Elvy SUHANA ; H S FARIHAH ; O FAIZAH ; A S NAZRUN ; M NORAZLINA ; M NORLIZA ; S IMA-NIRWANA
Singapore medical journal 2011;52(11):786-793
INTRODUCTIONGlucocorticoids cause osteoporosis by decreasing bone formation and increasing bone resorption activity. Glucocorticoid action in bones depends on the activity of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, which plays an important role in regulating corticosteroids. 11β-HSD1 is expressed by human and rat osteoblasts. We aimed to investigate the relationship between 11β-HSD1 dehydrogenase activity and bone histomorphometric changes in glucocorticoid-induced osteoporotic bone in rats.
METHODSA total of 30 male Sprague-Dawley rats (aged three months, weighing 200-250 g) were divided into three groups of ten each. Group 1 rats were the baseline control, which were sacrificed untreated at the beginning of the study. Group 2 rats underwent sham operation and were administered with vehicle olive oil intramuscularly at 0.05 ml/kg. Group 3 rats were adrenalectomised and administered with an intramuscular injection of dexamethasone 120 μg/kg body weight/day. The treatment was started two weeks after the operation, for a duration of two months. Plasma osteocalcin, plasma pyrodinoline, plasma corticosterone and 11β-HSD1 were measured, and bone histomorphometry analysis was performed.
RESULTSDexamethasone treatment caused an increase in plasma corticosterone level, together with a significant reduction in 11β-HSD1 dehydrogenase activity of the bone, along with a higher plasma level of the bone resorption marker, pyridinoline. Dexamethasone treatment also caused a reduction in trabecular volume, number and thickness, and an increase in trabecular separation.
CONCLUSIONLong-term glucocorticoid treatment reduces the 11β-HSD1 dehydrogenase activity in the bone, which can otherwise lead to bone loss due to the increased level of active glucocorticoids.
11-beta-Hydroxysteroid Dehydrogenase Type 1 ; metabolism ; Adrenal Cortex Hormones ; metabolism ; Amino Acids ; pharmacology ; Animals ; Body Weight ; Bone and Bones ; metabolism ; Corticosterone ; blood ; Dexamethasone ; pharmacology ; Enzyme-Linked Immunosorbent Assay ; methods ; Gene Expression Regulation, Enzymologic ; Glucocorticoids ; metabolism ; Humans ; Male ; Osteoporosis ; metabolism ; Rats ; Rats, Sprague-Dawley