1.Study on protective effect of Chaihu Shugan Powder against liver injury in rats with intrahepatic cholestasis by regulating FXR/Nrf2/ARE pathway.
Jing LOU ; Lei ZHAO ; Yan-Jie ZHU ; Shuai-Qiang YUAN ; Fei WANG ; Hang-Zhou ZHANG ; Jiao-Jiao XU ; Xiao-Ke YU ; Liu-Fa HOU
China Journal of Chinese Materia Medica 2022;47(20):5610-5616
This study aims to investigate the effect of Chaihu Shugan Powder(CHSG) on liver injury in rats with intrahepatic cholestasis by regulating farnesoid X receptor(FXR)/nuclear factor erythroid-2-related factor(Nrf2)/antioxidant response element(ARE) pathway. Eighty-four SD rats were classified into normal group, model group, CHSG-L group(0.5 g·kg~(-1)), CHSG-H group(2.5 g·kg~(-1)), ursodeoxycholic acid group(UDCA group, 100 mg·kg~(-1)), CHSG-H+sh-NC group(2.5 g·kg~(-1) CHSG+subcutaneous injection of sh-NC lentivirus), CHSG-H+sh-FXR group(2.5 g·kg~(-1) CHSG+subcutaneous injection of sh-FXR lentivirus), with 12 rats in each group. Rats were treated with corresponding drugs except for the normal group and the model group, once a day, for 7 days. On 5 th day, rats, except the normal group, were given α-naphthalene isothiocyanate(ANIT) at a dose of 100 mg·kg~(-1), once a day for 3 days to induce intrahepatic cholestasis, and the normal group was given the same amount of normal saline. Rats were anesthetized 1 h after the last administration and the 2 h bile flow was measured. Aeroset chemistry analyzer was employed to detect the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total bilirubin(TBIL), and total bile acid(TBA) in rat serum. Based on hematoxylin and eosin(HE) staining, the pathological changes of rat liver tissue were observed. Glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in rat liver tissue homogenate were monitored with corresponding kits. Western blot was used to detect the expression of FXR, Nrf2, and heme oxygenase-1(HO-1) proteins in rat liver tissue. Compared with the normal group, the model group showed many spots or concentrated necrotic areas in the liver tissue, infiltration of a large number of inflammatory cells, swelling liver cells with nuclear shrinkage. The 2 h bile flow, levels of GSH-Px and SOD, and relative expression of FXR, Nrf2, and HO-1 proteins were significantly lower, and the levels of ALT, AST, TBIL, TBA and MDA were significantly higher in the model group than in the normal group. Compared with the model group, CHSG-L group, CHSG-H group, and UDCA group demonstrated significant alleviation of pathological damage of the liver tissue, significantly high 2 h bile flow, levels of GSH-Px and SOD, and expression of FXR, Nrf2 and HO-1 proteins, and significantly low levels of ALT, AST, TBIL, TBA and MDA. Compared with the CHSG-H group, the CHSG-H+sh-FXR group had worse liver pathological damage, significantly low levels of 2 h bile flow, levels of GSH-Px and SOD, and expression of FXR, Nrf2, and HO-1 proteins, and significantly high levels of ALT, AST, TBIL, TBA, and MDA. CHSG may protect against liver injury in rats with intrahepatic cholestasis by activating the FXR/Nrf2/ARE pathway.
Rats
;
Animals
;
1-Naphthylisothiocyanate/toxicity*
;
Powders
;
NF-E2-Related Factor 2/genetics*
;
Rats, Sprague-Dawley
;
Cholestasis, Intrahepatic/drug therapy*
;
Liver
;
Superoxide Dismutase
;
Oxidative Stress
2.Comparative study on the protective effects of Yinchenhao Decoction against liver injury induced by alpha-naphthylisothiocyanate and carbon tetrachloride.
Hong-xin CAO ; Hui SUN ; Xin-gang JIANG ; Hai-tao LU ; Guang-mei ZHANG ; Xi-jun WANG ; Wen-jun SUN ; Ze-ming WU ; Ping WANG ; Lian LIU ; Jue ZHOU
Chinese journal of integrative medicine 2009;15(3):204-209
OBJECTIVETo optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine.
METHODSThe liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition.
RESULTSThe ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05).
CONCLUSIONYCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).
1-Naphthylisothiocyanate ; toxicity ; Alanine Transaminase ; blood ; Alkaline Phosphatase ; blood ; Animals ; Annonaceae ; Aspartate Aminotransferases ; blood ; Bilirubin ; blood ; Body Weight ; Carbon Tetrachloride ; toxicity ; Chemical and Drug Induced Liver Injury ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Glutathione ; metabolism ; Hepatocytes ; drug effects ; enzymology ; pathology ; Jaundice ; chemically induced ; drug therapy ; pathology ; Liver ; drug effects ; enzymology ; pathology ; Liver Diseases ; drug therapy ; pathology ; Male ; Malondialdehyde ; metabolism ; Organ Size ; Rats ; Rats, Wistar ; Superoxide Dismutase ; metabolism