1.A novel Na+-dependent transporter and NHE3 mediate H+ efflux in the luminal membrane of the pancreatic duct: regulation by cAMP.
Min Goo LEE ; Wooin AHN ; Joo Young CHOI ; Shmuel MUALLEM ; Kyung Hwan KIM
Journal of Korean Medical Science 2000;15(Suppl):S29-S30
No abstract available.
1-Methyl-3-isobutylxanthine/pharmacology
;
Ammonium Compounds/pharmacology
;
Animal
;
Biological Transport/physiology
;
Biological Transport/drug effects
;
Cell Membrane/metabolism
;
Cyclic AMP/metabolism*
;
Forskolin/pharmacology
;
Guanidines/pharmacology
;
Mice
;
Mice, Knockout
;
Pancreatic Ducts/metabolism*
;
Phosphodiesterase Inhibitors/pharmacology
;
Protons
;
Sodium-Hydrogen Antiporter/metabolism*
;
Sodium-Hydrogen Antiporter/genetics
;
Sulfones/pharmacology
2.Relationship between bicarbonate and cyclic nucleotide in the promoting effects on head-to-head agglutination in boar spermatozoa.
Hiroshi HARAYAMA ; Seishiro KATO
Asian Journal of Andrology 2002;4(2):87-96
AIMTo clarify the relationship between bicarbonate and cAMP in the promoting effects on the sperm agglutination.
METHODSSpermatozoa were collected from mature boars, washed and resuspended in a modified Krebs-Ringer HEPES lacking calcium chloride (mKRH). The sperm suspensions were incubated in a water bath (38.5 degrees C) for 60 min and then the percentage of head-to-head agglutinated spermatozoa was determined.
RESULTSSupplementation of the mKRH with sodium bicarbonate (5-10 mM) significantly raised the percentage of head-to-head agglutinated spermatozoa in the samples. The addition of selective inhibitors for calcium/calmodulin-dependent phosphodiesterases (type 1: 8-methoxymethyl-IBMX and vinpocetine, 25-50 micro M) or for cAMP-specific phosphodiesterases (type 4: Ro20-1724 and rolipram, 25-50 microM) enhanced the effect of bicarbonate on sperm agglutination as highly as did the addition of non-selective inhibitors for phosphodiesterases (IBMX and papaverine, 25-50 microM). A calmodulin antagonist (W-7, 2 microM), that potentially blocks the stimulator of the calcium/calmodulin-dependent phosphodiesterases, significantly enhanced the effect of bicarbonate on sperm agglutination. Moreover, a phosphodiesterase-resistant cAMP analogue (cBiMPS, 0.1 mM) markedly induced agglutination in more spermatozoa (76%) after the incubation without bicarbonate and phosphodiesterase inhibitors than did a less potent cAMP analogue (dibutyryl cAMP, 1 mM) (21%), while three kinds of cGMP analogues (0.1-1 mM) had no effect on sperm agglutination. In addition, a cAMP antagonist (Rp-cAMPS, 1 mM) significantly reduced the sperm agglutination resulting from the actions of bicarbonate and IBMX. On the other hand, the effect of bicarbonate was abolished by a change of incubation temperature from 38.5 degrees C to 25 degrees C.
CONCLUSIONThese findings demonstrate that the bicarbonate-induced agglutination of boar spermatozoa is controlled via the cAMP-mediated, temperature-dependent signaling cascade. This cascade is suppressed by the action of the phosphodiesterase (at least types 1 and 4).
1-Methyl-3-isobutylxanthine ; pharmacology ; Animals ; Bucladesine ; pharmacology ; Cyclic AMP ; physiology ; Cyclic GMP ; analogs & derivatives ; pharmacology ; physiology ; Male ; Papaverine ; pharmacology ; Purinergic P1 Receptor Antagonists ; Sodium Bicarbonate ; pharmacology ; Sperm Agglutination ; drug effects ; physiology ; Sperm Head ; drug effects ; physiology ; Swine ; Theophylline ; analogs & derivatives ; pharmacology
3.Ultrastructure and electrophysiology of astrocytes differentiated from adult adipose-derived stromal cells.
Ya OU ; Xiao-dong YUAN ; Ya-nan CAI ; Yan-hui LU
Chinese Medical Journal 2011;124(17):2656-2660
BACKGROUNDAdipose-derived stromal cell (ADSC) differentiation into neural cells in vitro is becoming widely studied. However, there are few reports on astrocytes following differentiation, and particularly on maturation and electrophysiology. In this study, we used various methods to determine ADSC-derived astrocyte maturity.
METHODSChemical induction with isobutylmethylxanthine (IBMX) was used to differentiate adult ADSCs into astrocytes followed by hematoxylin-eosin (HE) staining to observe morphology and transmission electron microscopy for cellular ultrastructure assessment. Immunofluorescence was used to detect expression of neural stem cell marker nestin as well as glial markers glial fibrillary acidic protein (GFAP) and S-100. In addition, we measured membrane potentials in bis-(1,3-dibarbituric acid) trimethine oxanol-labeled ADSCs and astrocytes by stimulation with a high potassium solution under an inverted fluorescence microscope. Finally, cell cycle distribution was detected by flow cytometry.
RESULTSTypical astrocyte morphology was shown by HE staining after 48-hour differentiation. Glial fibril was observed with transmission electron microscopy. GFAP and S-100 were not expressed in the control group, but were expressed within 24-hour differentiation and reached a maximum at day 14 with no change up to day 28. Nestin was weakly expressed in control cells and also reached a maximum at day 14 with the percentage of positive cells constant until day 21 followed by a decrease. Differentiated cell membrane potentials after stimulation with potassium were slightly increased, and then gradually declined over time. There was no significant membrane potential change in the control group. Flow cytometry showed that the percentage of cells in G0/G1 phase was 93% and only 5% in S phase.
CONCLUSIONADSCs were differentiated into mature astrocytes with typical characteristics including morphology, ultrastructure, marker protein expression, mature potassium channels and mitotic capacity.
1-Methyl-3-isobutylxanthine ; pharmacology ; Adipose Tissue ; cytology ; Adult ; Astrocytes ; cytology ; Barbiturates ; pharmacology ; Cell Differentiation ; drug effects ; Cells, Cultured ; Electrophysiology ; methods ; Female ; Flow Cytometry ; Glial Fibrillary Acidic Protein ; metabolism ; Humans ; Male ; Membrane Potentials ; drug effects ; Microscopy, Fluorescence ; S100 Proteins ; metabolism ; Stromal Cells ; cytology ; Young Adult
4.Effect of xanthohumol on melanogenesis in B16 melanoma cells.
Jeung Hyun KOO ; Hyoung Tae KIM ; Ha Yong YOON ; Kang Beom KWON ; Il Whan CHOI ; Sung Hoo JUNG ; Han Uk KIM ; Byung Hyun PARK ; Jin Woo PARK
Experimental & Molecular Medicine 2008;40(3):313-319
Xanthohumol (XH), the principal prenylflavonoid of the hop plant (Humulus lupulus L.), dose-dependently inhibited isobutylmethylxanthine (IBMX)-induced melanogenesis in B16 melanoma cells, with little cytotoxicity at the effective concentrations. Decreased melanin content was accompanied by reduced tyrosinase enzyme activity, protein and mRNA expression. The levels of tyrosinase-related protein 1 and 2 mRNAs were decreased by XH. XH also inhibited alpha-melanocyte stimulating hormone- or forskolin-induced increases in melanogenesis, suggesting an action on the cAMP-dependent melanogenic pathway. XH downregulated the protein and mRNA expression of microphthalmia-associated transcription factor (MITF), a master transcriptional regulator of key melanogenic enzymes. These results suggest that XH might act as a hypo-pigmenting agent through the downregulation of MITF in the cAMP-dependent melanogenic pathway.
1-Methyl-3-isobutylxanthine/pharmacology
;
Animals
;
Cell Line
;
Cell Survival/drug effects
;
Dose-Response Relationship, Drug
;
Down-Regulation
;
Drug Antagonism
;
Forskolin/pharmacology
;
*Humulus
;
Intramolecular Oxidoreductases/antagonists & inhibitors/biosynthesis
;
Melanins/antagonists & inhibitors/*biosynthesis
;
Melanocytes/*drug effects/*metabolism
;
Melanoma, Experimental
;
Membrane Glycoproteins/antagonists & inhibitors/biosynthesis
;
Mice
;
Microphthalmia-Associated Transcription Factor/antagonists & inhibitors
;
Monophenol Monooxygenase/antagonists & inhibitors/biosynthesis/genetics
;
Oxidoreductases/antagonists & inhibitors/biosynthesis
;
Propiophenones/*pharmacology
;
Signal Transduction/drug effects
;
alpha-MSH/metabolism
5.Protein kinase A-mediated phosphorylation of HERG potassium channels in a human cell line.
Zhang WEI ; Dierk THOMAS ; Christoph A KARLE ; Sven KATHÖFER ; Johannes SCHENKEL ; Volker A W KREYE ; Eckhard FICKER ; Barbara A WIBLE ; Johann KIEHN
Chinese Medical Journal 2002;115(5):668-676
OBJECTIVETo investigate the molecular mechanism of human ether-a-go-go-related gene (HERG) potassium channels regulated by protein kinase A (PKA) in a human cell line.
METHODSHERG channels were stably expressed in human embryonic kidney (HEK) 293 cells, and currents were measured with the patch clamp technique. The direct phosphorylation of HERG channel proteins expressed heterologously in Xenopus laevis oocytes was examined by (32)P labeling and immunoprecipitation with an anti-HERG antibody.
RESULTSElevation of the intracellular cAMP-concentration by incubation with the adenylate cyclase activator, forskolin (10 micromol/L), and the broad range phosphodiesterase inhibitor, IBMX (100 micromol/L), caused a HERG tail current reduction of 83.2%. In addition, direct application of the membrane permeable cAMP analog, 8-Br-cAMP (500 micromol/L), reduced the tail current amplitude by 29.3%. Intracellular application of the catalytic subunit of protein kinase A (200 U/ml) led to a tail current decrease by 56.9% and shifted the activation curve by 15.4 mV towards more positive potentials. HERG WT proteins showed two phosphorylated bands, an upper band with a molecular mass of approximately 155 kDa and a lower band with a molecular mass of approximately 135 kDa, indicating that both the core- and the fully glycosylated forms of the protein were phosphorylated.
CONCLUSIONSPKA-mediated phosphorylation of HERG channels causes current reduction in a human cell line. The coupling between the repolarizing cardiac HERG potassium current and the protein kinase A system could contribute to arrhythmogenesis under pathophysiological conditions.
1-Methyl-3-isobutylxanthine ; pharmacology ; 8-Bromo Cyclic Adenosine Monophosphate ; pharmacology ; Adenylyl Cyclases ; metabolism ; Animals ; Anti-Arrhythmia Agents ; pharmacology ; Cation Transport Proteins ; Cell Line ; Colforsin ; pharmacology ; Cyclic AMP ; metabolism ; Cyclic AMP-Dependent Protein Kinases ; metabolism ; DNA-Binding Proteins ; ERG1 Potassium Channel ; Enzyme Activation ; drug effects ; Ether-A-Go-Go Potassium Channels ; Female ; Humans ; Membrane Potentials ; drug effects ; Microinjections ; Oocytes ; Patch-Clamp Techniques ; Phenethylamines ; pharmacology ; Phosphodiesterase Inhibitors ; pharmacology ; Phosphoric Diester Hydrolases ; drug effects ; metabolism ; Phosphorylation ; Potassium Channels ; genetics ; metabolism ; physiology ; Potassium Channels, Voltage-Gated ; RNA, Complementary ; administration & dosage ; genetics ; Sulfonamides ; pharmacology ; Trans-Activators ; Transcriptional Regulator ERG ; Xenopus laevis