1.Interpretation and thoughts on the formulation and revision of the standards for exogenous harmful residues in traditional Chinese medicinal materials in the Chinese Pharmacopoeia 2025 Edition
WANG Ying ; SHEN Mingrui ; LIU Yuanxi ; ZUO Tiantian ; WANG Dandan ; HE Yi ; CHENG Xianlong ; JIN Hongyu ; LIU Yongli ; WEI Feng ; MA Shuangcheng
Drug Standards of China 2025;26(1):083-092
As people’s attention to health continues to increase, the market demand for traditional Chinese medicine (TCM) is growing steadily. The quality and safety of Chinese medicinal materials have attracted unprecedented social attention. In particular, the issue of exogenous harmful residue pollution in TCM has become a hot topic of concern for both regulatory authorities and society. The Chinese Pharmacopoeia 2025 Edition further refines the detection methods and limit standards for exogenous harmful residues in TCM. This not only reflects China’s high-level emphasis on the quality and safety of TCM but also demonstrates the continuous progress made by China in the field of TCM safety supervision. Basis on this study, by systematically reviewing the development history of the detection standards for exogenous harmful residues in TCM and analyzing the revisions and updates of these detection standards in the Chinese Pharmacopoeia 2025 Edition, deeply explores the key points of the changes in the monitoring standards for exogenous harmful residues in TCM in the Chinese Pharmacopoeia 2025 Edition. Moreover, it interprets the future development directions of the detection of exogenous residues in TCM, aiming to provide a reference for the formulation of TCM safety supervision policies.
2.Progress in the application of poloxamer in new preparation technology
Xue QI ; Yi CHENG ; Nan LIU ; Zengming WANG ; Hui ZHANG ; Aiping ZHENG ; Dongzhou KANG
China Pharmacy 2025;36(5):630-635
Poloxamer, as a non-ionic surfactant, exhibits a unique triblock [polyethylene oxide-poly (propylene oxide)-polyethylene oxide] structure, which endows it with broad application potential in various fields, including solid dispersion technology, nanotechnology, gel technology, biologics, gene engineering and 3D printing. As a carrier, it enhances the solubility and bioavailability of poorly soluble drugs. In the field of nanotechnology, it serves as a stabilizer etc., enriching preparation methods. In gel technology, its self-assembly behavior and thermosensitive properties facilitate controlled drug release. In biologics, it improves targeting efficiency and reduces side effects. In gene engineering, it enhances delivery efficiency and expression levels. In 3D printing, it provides novel strategies for precise drug release control and the production of high-quality biological products. As a versatile material, poloxamer holds promising prospects in the pharmaceutical field.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Expression and clinical significance of TLR4 and NF-κB in conjunctival epithelial cells and tears of patients with dry eye
Guoying LIU ; Jiangping HOU ; Huan WU ; Yi JIANG
International Eye Science 2025;25(6):975-979
AIM: To investigate the expression and clinical diagnostic value of toll-like receptor 4(TLR4)and nuclear factor-κB(NF-κB)in conjunctival epithelial cells and tears of patients with dry eye.METHODS: From January 2023 to June 2024, 104 dry eye patients(104 eyes, disease group)who visited our hospital and 100 healthy individuals(100 eyes, control group)who underwent physical examination were selected. The changes of TLR4 and NF-κB in conjunctival epithelial cells and tears were analyzed. Pearson analysis was applied to analyze the correlation between TLR4 and NF-κB expression in conjunctival epithelial cells and tears. Logistic analysis was applied to analyze the factors that affected dry eye. ROC was applied to analyze the diagnostic value of TLR4 and NF-κB expression in conjunctival epithelial cells and tears for dry eye.RESULTS: The differences in the use of eye drops, tear film break-up time(BUT), Schirmer's test(SⅠt), tear film thickness(TFT), and corneal fluorescein staining(CFS)scores between the disease group and the control group were statistically significant(all P<0.01). The expression levels of TLR4 and NF-κB in conjunctival epithelial cells and tears in the disease group were significantly higher than those in the control group(all P<0.01). There was a positive correlation between TLR4 and NF-κB in conjunctival epithelial cells and tears(r=0.392, 0.348, all P<0.05). Frequent use of eye drops, CFS score, TLR4, and NF-κB were risk factors for dry eye(OR=2.153, 3.183, 1.578, 2.452, all P<0.05), while BUT, SⅠt, and TFT were protective factors for dry eye(OR=0.654, 0.755, 0.276, all P<0.05). The sensitivity, specificity, and AUC of TLR4 combined with NF-κB in conjunctival epithelial cells in the diagnosis of dry eye were 86.54%, 81.00%, and 0.889, respectively. The combination of TLR4 and NF-κB had higher diagnostic value for dry eye than uncombined diagnosis(Zcombination-TLR4=3.506, P=0.001; Zcombination-NF-κB=3.165, P=0.002). The sensitivity, specificity, and AUC of TLR4 combined with NF-κB in tears for diagnosing dry eye were 82.69%, 70.00%, and 0.818, respectively. The combination of TLR4 and NF-κB in tears had higher diagnostic value for dry eye than uncombined diagnosis(Zcombination-TLR4=3.117, P=0.002; Zcombination-NF-κB=2.363, P=0.018).CONCLUSION: The expression levels of TLR4 and NF-κB in conjunctival epithelial cells and tears of patients with dry eye are elevated. TLR4 and NF-κB are related to the development of dry eye, and that elevated levels of both are associated with an increased risk of dry eye disease. The combination of TLR4 and NF-κB has a certain diagnostic significance for dry eye.
5.The Mechanism of Blue Light in Inactivating Microorganisms and Its Applications in The Food and Medical Fields
Ruo-Hong BI ; Rong-Qian WU ; Yi LÜ ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2025;52(5):1219-1228
Blue light inactivation technology, particularly at the 405 nm wavelength, has demonstrated distinct and multifaceted mechanisms of action against both Gram-positive and Gram-negative bacteria, offering a promising alternative to conventional antibiotic therapies. For Gram-positive pathogens such as Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), the bactericidal effects are primarily mediated by endogenous porphyrins (e.g., protoporphyrin III, coproporphyrin III, and uroporphyrin III), which exhibit strong absorption peaks between 400-430 nm. Upon irradiation, these porphyrins are photoexcited to generate cytotoxic reactive oxygen species (ROS), including singlet oxygen, hydroxyl radicals, and superoxide anions, which collectively induce oxidative damage to cellular components. Early studies by Endarko et al. revealed that (405±5) nm blue light at 185 J/cm² effectively inactivated L. monocytogenes without exogenous photosensitizers, supporting the hypothesis of intrinsic photosensitizer involvement. Subsequent work by Masson-Meyers et al. demonstrated that 405 nm light at 121 J/cm² suppressed MRSA growth by activating endogenous porphyrins, leading to ROS accumulation. Kim et al. further elucidated that ROS generated under 405 nm irradiation directly interact with unsaturated fatty acids in bacterial membranes, initiating lipid peroxidation. This process disrupts membrane fluidity, compromises structural integrity, and impairs membrane-bound proteins, ultimately causing cell death. In contrast, Gram-negative bacteria such as Salmonella, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, and Acinetobacter baumannii exhibit more complex inactivation pathways. While endogenous porphyrins remain central to ROS generation, studies reveal additional photodynamic contributors, including flavins (e.g., riboflavin) and bacterial pigments. For instance, H. pylori naturally accumulates protoporphyrin and coproporphyrin mixtures, enabling efficient 405 nm light-mediated inactivation without antibiotic resistance concerns. Kim et al. demonstrated that 405 nm light at 288 J/cm² inactivates Salmonella by inducing genomic DNA oxidation (e.g., 8-hydroxy-deoxyguanosine formation) and disrupting membrane functions, particularly efflux pumps and glucose uptake systems. Huang et al. highlighted the enhanced efficacy of pulsed 405 nm light over continuous irradiation for E. coli, attributing this to increased membrane damage and optimized ROS generation through frequency-dependent photodynamic effects. Environmental factors such as temperature, pH, and osmotic stress further modulate susceptibility, sublethal stress conditions (e.g., high salinity or acidic environments) weaken bacterial membranes, rendering cells more vulnerable to subsequent ROS-mediated damage. The 405 nm blue light inactivates drug-resistant Pseudomonas aeruginosa through endogenous porphyrins, pyocyanin, and pyoverdine, with the inactivation efficacy influenced by bacterial growth phase and culture medium composition. Intriguingly, repeated 405 nm exposure (20 cycles) failed to induce resistance in A. baumannii, with transient tolerance linked to transient overexpression of antioxidant enzymes (e.g., superoxide dismutase) or stress-response genes (e.g., oxyR). For Gram-positive bacteria, porphyrin abundance dictates sensitivity, whereas in Gram-negative species, membrane architecture and accessory pigments modulate outcomes. Critically, ROS-mediated damage is nonspecific, targeting DNA, proteins, and lipids simultaneously, thereby minimizing resistance evolution. The 405 nm blue light technology, as a non-chemical sterilization method, shows promise in medical and food industries. It enhances infection control through photodynamic therapy and disinfection, synergizing with red light for anti-inflammatory treatments (e.g., acne). In food processing, it effectively inactivates pathogens (e.g., E. coli, S. aureus) without altering food quality. Despite efficacy against multidrug-resistant A. baumannii, challenges include device standardization, limited penetration in complex materials, and optimization of photosensitizers/light parameters. Interdisciplinary research is needed to address these limitations and scale applications in healthcare, food safety, and environmental decontamination.
6.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
7.Shaoyaotang Containing Serum Mediates Fas/FasL Pathway to Inhibit Lipopolysaccharide Induced Inflammation and Apoptosis of Caco-2 Cells
Yuting YANG ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Nianjia XIE ; Bo ZOU ; Daguang CHEN ; Erle LIU ; Yi LU ; Zhaowen LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):62-69
ObjectiveTo investigate the effects of different concentrations of Shaoyaotang-containing serum on lipopolysaccharide (LPS)-induced inflammation of human colorectal adenocarcinoma (Caco-2) cells by inhibiting apoptosis via activating the tumor necrosis factor (TNF) receptor superfamily member 6 (Fas)/Fas ligand (FasL) pathway. MethodsCaco-2 cells were allocated into blank, model (LPS, 10 mg·L-1), Shaoyaotang-containing serum (5%, 10%, 15%, 20%), and Fas inhibitor (KR-33493, 20 mmol·L-1) groups. Except the blank group, the other groups were stimulated with 10 mg·L-1 LPS for 24 h for the modeling of inflammation. After successful modeling, the blank, Fas inhibitor, and model groups were treated with blank serum, and the Shaoyaotang-containing serum groups were treated with the serum samples at corresponding concentrations for 24 h. The Fas inhibitor group was subjected to KR-33493 pretreatment for 1 h. Cell proliferation and viability were examined by the cell-counting kit-8 (CCK-8) method. The levels of interleukin (IL)-6, IL-1β, and TNF-α were measured by enzyme-linked immunosorbent assay. Apoptosis was detected by flow cytometry. The protein and mRNA levels of Fas, FasL, cysteinyl aspartate-specific proteinase (Caspase)-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsCompared with the blank group, the model group presented a decrease in cell survival rate (P<0.01). Compared with that in the model group, the cell survival rate showed no significant change in the 5% Shaoyaotang-containing serum group but increased in the 10%, 15%, and 20% Shaoyaotang-containing serum groups (P<0.01). Since there was no statistical difference between the 5% Shaoyaotang-containing serum group and the model group, 10%, 15%, and 20% Shaoyaotang-containing sera were selected for the follow-up study. Compared with the blank group, the model group showed risen levels of IL-6, IL-1β, and TNF-α (P<0.01), an increased apoptosis rate (P<0.01), up-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.01), and down-regulated protein and mRNA levels of Bcl-2 (P<0.01). Compared with the model group, the Fas inhibitor group and the 10%, 15%, and 20% Shaoyaotang-containing serum groups showed declined levels of IL-6, IL-1β, and TNF-α (P<0.01), decreased apoptosis rates (P<0.01), down-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and up-regulated protein and mRNA levels of Bcl-2 (P<0.05, P<0.01). In addition, the 15% and 20% Shaoyaotang-containing serum groups had lower levels of IL-6, IL-1β, and TNF-α (P<0.05, P<0.01), lower apoptosis rates (P<0.05, P<0.01), lower protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and higher protein and mRNA levels of Bcl-2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can reduce the content of inflammatory factors in Caco-2 cells, down-regulate the protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax, and up-regulate the protein and mRNA levels of Bcl-2 under the intervention of LPS by regulating the Fas/FasL pathway and inhibiting the apoptosis of intestinal epithelial cells in ulcerative colitis.
8.Zinc Finger Protein 639 Expression Is a Novel Prognostic Determinant in Breast Cancer
Fang LEE ; Shih-Ping CHENG ; Ming-Jen CHEN ; Wen-Chien HUANG ; Yi-Min LIU ; Shao-Chiang CHANG ; Yuan-Ching CHANG
Journal of Breast Cancer 2025;28(2):86-98
Purpose:
Zinc finger protein 639 (ZNF639) is often found within the overlapping amplicon of PIK3CA, and previous studies suggest its involvement in the pathogenesis of esophageal and oral squamous cell carcinomas. However, its expression and significance in breast cancer remain uncharacterized.
Methods:
Immunohistochemical analysis of ZNF639 was performed using tissue microarrays.Functional studies, including colony formation, Transwell cell migration, and in vivo metastasis, were conducted on breast tumor cells with ZNF639 knockdown via small interfering RNA transfection.
Results:
Reduced ZNF639 immunoreactivity was observed in 82% of the breast cancer samples, independent of hormone receptor and human epidermal growth factor receptor 2 status. In multivariate Cox regression analyses, ZNF639 expression was associated with favorable survival outcomes, including recurrence-free survival (hazard ratio, 0.35; 95% confidence interval [CI], 0.14–0.89) and overall survival (hazard ratio, 0.41; 95% CI, 0.16– 1.05). ZNF639 knockdown increased clonogenicity, cell motility, and lung metastasis in NOD/ SCID mice. Following the ZNF639 knockdown, the expression of Snail1, vimentin, and C-C chemokine ligand 20 (CCL20) was upregulated, and the changes in cell phenotype mediated by ZNF639 were reversed by the subsequent knockdown of CCL20.
Conclusion
Low ZNF639 expression is a novel prognostic factor for recurrence-free survival in patients with breast cancer.
9.Mechanism of Xuefu Zhuyutang in Intervening in Ferroptosis in Rats with Coronary Heart Disease with Blood Stasis Syndrome Based on ACSL4 Signalling Pathway
Yi LIU ; Yang YANG ; Chang SU ; Peng TIAN ; Mingyun WANG ; Ruqian ZHONG ; Xuejiao XIE ; Qing YAN ; Qinghua PENG ; Qiuyan ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):27-38
ObjectiveTo investigate the mechanism of ferroptosis mediated by long-chain acyl-CoA synthetase 4 (ACSL4) signalling pathway in rats with coronary heart disease with blood stasis syndrome and the intervention effect of Xuefu Zhuyutang. MethodsSPF male SD rats were randomly divided into normal group, sham-operation group, model group, trimetazidine group (5.4 mg·kg-1), low-, medium-, and high-dose group (3.51, 7.02,14.04 g·kg-1) of Xuefu Zhuyutang. The coronary artery left anterior descending ligation method was used to prepare a model of coronary heart disease with blood stasis syndrome, and continuous treatment for 7 d was conducted, while the sham-operation group was only threaded and not ligated. The general macroscopic symptoms of the rats were observed, and indicators such as electrocardiogram, echocardiography, and blood rheology were detected. The pathological morphology of myocardial tissue was observed by hematoxylin-eosin (HE) staining, and the changes in mitochondria in myocardial tissue were observed by transmission electron microscopy. The level of iron deposition in myocardial tissue was observed by Prussian blue staining. The levels of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE were detected in serum by enzyme-linked immunosorbent assay. A biochemical colourimetric assay was used to detect the levels of Fe2+, lipid peroxidation (LPO), glutathione (GSH), and T-GSH/glutathione disulfide (GSSG) in myocardial tissue. DCFH-DA fluorescence quantitative assay was employed to detect the levels of reactive oxygen species (ROS). Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the protein and mRNA expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ACSL4, and ly-sophosphatidylcholine acyltransferase3 (LPCAT3) in myocardial tissue. ResultsCompared with those in the normal group, the rats in the model group were poor in general macroscopic symptoms. The electrocardiogram showed widened QRS wave amplitude and increased voltage, bow-back elevation of the ST segments, elevated T waves, J-point elevation, and accelerated heart rate. Echocardiography showed a significant reduction in left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01). Blood rheology showed that the viscosity of the whole blood (low, medium, and high rate of shear) was significantly increased (P<0.01). HE staining showed an abnormal structure of myocardial tissue. There was a large area of myocardial necrosis and inflammatory cell infiltration and a large number of connective tissue between myocardial fibers. Transmission electron microscopy showed that the mitochondria were severely atrophy or swelling. The cristae were reduced or even broken, and the matrix was flocculent or even vacuolated. Prussian blue staining showed that there were a large number of iron-containing particles, and the iron deposition was obvious. The content of 12-HETE and 15-HETE in the serum was significantly increased (P<0.01). The content of Fe2+, LPO, and ROS in myocardial tissue was significantly increased (P<0.01). The content of GSH was significantly decreased (P<0.01), and T-GSH/GSSG was decreased (P<0.01). The protein and mRNA expressions of GPX4 and FTH1 in myocardial tissue were both significantly decreased (P<0.05, P<0.01), while those of ACSL4 and LPCAT3 increased significantly (P<0.01). Compared with the model group, the general macroscopic symptoms and electrocardiogram results of rats in low-, medium- and high-dose groups of Xuefu Zhuyutang were alleviated, and the differences in LVEF/LVFS ratios were all significantly increased (P<0.05, P<0.01). The differences in whole-blood viscosity (low, medium, and high rate of shear) were all significantly decreased (P<0.01). The results of HE staining and transmission electron microscopy showed that the morphology, structure, and mitochondria of cardiomyocytes were improved. The content of 12-HETE and 15-HETE in serum was reduced to different degrees in low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). The content of Fe2+, LPO, and ROS was significantly reduced in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and the content of GSH and T-GSH/GSSG was significantly increased (P<0.05, P<0.01). The protein and mRNA expressions of GPX4 and FTH1 were significantly increased to varying degrees in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and ACSL4 and LPCAT3 were decreased to different degrees in the low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). ConclusionXuefu Zhuyutang can regulate iron metabolism and anti-lipid oxidation reaction to mediate ferroptosis through the ACSL4 signalling pathway, thus exerting a protective effect on rats with coronary heart disease with blood stasis syndrome.
10.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.

Result Analysis
Print
Save
E-mail