1.Study on the effect of apoptosis stimulation protein 2 on traumatic proliferative vitreoretinopathy in rabbits
Xiaoli CHEN ; Yuze MAO ; Wenhui CAI ; Haiwei WANG ; Yankun YUE
International Eye Science 2026;26(1):16-20
AIM:To investigate the effect of apoptosis stimulation protein 2(ASPP2)on the development of traumatic proliferative vitreoretinopathy(PVR)in a rabbit model.METHODS:A total of 30 New Zealand white rabbits were selected, and the right eyes of all rabbits were inflicted with a scleral penetrating wound of approximately 6 mm. Then rabbits were randomly and evenly divided into experimental and control group. The experimental group received an intravitreal injection of 0.1 mL of ARPE-19 cell suspension transfected with lentivirus-ASPP2, while the control group received an intravitreal injection of 0.1 mL of ARPE-19 cell suspension transfected with negative control lentivirus. At 1, 2, 3, and 4 wk after PVR modeling, a handheld tonometer was used to measure the intraocular pressure. Moreover, fundus photography and ocular ultrasound examination were performed to detect the retinal proliferation. At 4 wk after modeling, hematoxylin-eosin staining was used to observe the morphological retinal changes, and Western blot was used to determine the protein expressions of ASPP2 and the epithelial-mesenchymal transition(EMT)marker Vimentin in the rabbit retinas.RESULTS:At 1, 2, 3, and 4 wk after modeling, there were no significant changes in intraocular pressure within the experimental and control group of rabbit eyes, either before or after PVR modeling, the success rate of PVR modeling in the experimental group was lower than that in the control group(P<0.05), and the retinal proliferation and structural disorder was less severe in the experimental group. At 4 wk after modeling, the retinal protein expression level of ASPP2 in the experimental group was significantly higher than that in the control group(t=3.193, P=0.033), while the Vimentin protein expression level was significantly lower in the experimental group(t=-3.599, P=0.023).CONCLUSION:ASPP2 may be involved in regulating the process of EMT in retinal pigment epithelial cells, thereby delaying the development and progression of traumatic PVR in rabbit eyes.
2.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
4.Aberrant fragmentomic features of circulating cell-free mitochondrial DNA enable early detection and prognosis prediction of hepatocellular carcinoma
Yang LIU ; Fan PENG ; Siyuan WANG ; Huanmin JIAO ; Kaixiang ZHOU ; Wenjie GUO ; Shanshan GUO ; Miao DANG ; Huanqin ZHANG ; Weizheng ZHOU ; Xu GUO ; Jinliang XING
Clinical and Molecular Hepatology 2025;31(1):196-212
Background/Aims:
Early detection and effective prognosis prediction in patients with hepatocellular carcinoma (HCC) provide an avenue for survival improvement, yet more effective approaches are greatly needed. We sought to develop the detection and prognosis models with ultra-sensitivity and low cost based on fragmentomic features of circulating cell free mtDNA (ccf-mtDNA).
Methods:
Capture-based mtDNA sequencing was carried out in plasma cell-free DNA samples from 1168 participants, including 571 patients with HCC, 301 patients with chronic hepatitis B or liver cirrhosis (CHB/LC) and 296 healthy controls (HC).
Results:
The systematic analysis revealed significantly aberrant fragmentomic features of ccf-mtDNA in HCC group when compared with CHB/LC and HC groups. Moreover, we constructed a random forest algorithm-based HCC detection model by utilizing ccf-mtDNA fragmentomic features. Both internal and two external validation cohorts demonstrated the excellent capacity of our model in distinguishing early HCC patients from HC and highrisk population with CHB/LC, with AUC exceeding 0.983 and 0.981, sensitivity over 89.6% and 89.61%, and specificity over 98.20% and 95.00%, respectively, greatly surpassing the performance of alpha-fetoprotein (AFP) and mtDNA copy number. We also developed an HCC prognosis prediction model by LASSO-Cox regression to select 20 fragmentomic features, which exhibited exceptional ability in predicting 1-year, 2-year and 3-year survival (AUC=0.8333, 0.8145 and 0.7958 for validation cohort, respectively).
Conclusions
We have developed and validated a high-performing and low-cost approach in a large clinical cohort based on aberrant ccf-mtDNA fragmentomic features with promising clinical translational application for the early detection and prognosis prediction of HCC patients.
5.Two novel rare variants in the PTH gene found in patients with hypoparathyroidism
Yue JIANG ; An SONG ; Jiajia WANG ; Xinqi CHENG ; Jing YANG ; Yan JIANG ; Mei LI ; Weibo XIA ; Xiaoping XING ; Min NIE ; Ou WANG
Osteoporosis and Sarcopenia 2025;11(1):22-28
Objectives:
Hypoparathyroidism (HP) is a rare endocrine disorder caused by parathyroid hormone (PTH) defi ciency. The PTH is a candidate gene for familial isolated hypoparathyroidism (FIH). This study aimed to investigate the pathogenicity of two novel rare variants (RVs) ofPTH through in vitro functional study.
Methods:
Targeted next-generation sequencing was used to identify candidate gene mutations. Clinical data were retrospectively collected. Wild-type (WT) PTH was used as a template for site-directed mutagenesis to create mutant eukaryotic expression plasmids, which were transfected into cells. Treated with or without 4-phenylbu tyric acid (4-PBA), the levels of intact PTH (iPTH) and PTH (1-84) were measured by chemiluminescence, and protein expression was assessed using Western blotting.
Results:
Two patients carrying PTH mutations (c.154G > A: p.Val52Ile, c.270G > T: p.Leu90Phe) were identified.Patient 1, a 45-year-old male, presented with carpal and pedal numbness, muscle cramps, and low serum calcium (1.29 mmol/L). Patient 2, a 12-year-old female, had muscle twitches, convulsions, low calcium (1.50 mmol/L), and iPTH of 4 pg/mL. The iPTH or PTH (1-84) levels in the medium transfected with mutant Val52Ile and Leu90Phe PTH decreased by 31%–38%, and 51%–96% compared to WT (allP < 0.05), which were not rescued by 4-PBA. No significant changes in intracellular PTH expression were observed.
Conclusions
In this study, two novel RVs of PTH(Val52Ile and Leu90Phe) were identified that may impair hormone synthesis and secretion. Our study has broadened the mutation spectrum of the PTH and shed light on potential mechanisms underlying FIH.
6.Contamination risk and drug resistance analysis of Klebsiella pneumoniae in a medical institution in Minghang District, Shanghai, 2021‒2023
Sijia ZHANG ; Xing ZHANG ; Liang TIAN ; Yibin ZHOU ; Xiaosa WEN ; Jing WANG ; Zhiyin XU ; Min WU
Shanghai Journal of Preventive Medicine 2025;37(4):289-295
ObjectiveTo investigate the contamination status, transmission risk and drug resistance of Klebsiella pneumoniae (KP) on the object surfaces in the surrounding environment of hospitalized patients infected with carbapenem-resistant Klebsiella pneumoniae (CRKP) , so as to provide a scientific guidance for the prevention and control of healthcare-associated infection. MethodsSamples from the surfaces of objects in the surrounding environment of CRKP infected patients living in the intensive care unit (ICU) and hand specimens from healthcare workers were collected for KP isolation and identification, as well as drug susceptible test in a medical institution located in Minhang District, Shanghai from 2021 to 2023. Additionally, both univariate and multivariate logistic regression analyses were used to identify the influencing factors associated with KP contamination in the hospital environment. ResultsA total of 546 surface samples were collected from the surrounding environment objects of 15 patients infected with CRKP, with a KP detection rate of 6.59% (36/546).The KP detection rate in the ICU of general ward (10.22%) was higher than that in the ICU of emergency department (2.94%) (χ2=12.142, P<0.001). Moreover, the KP detection rate on the surfaces of patient-contacted items (15.66%) was higher than that on shared-use items (6.25%), cleaning items (10.00%), and medical supplies (3.30%) (χ2=17.943, P<0.001). Besides, the detection rate of KP in items sent out of hospital for disinfection (15.38%) was higher than that in those self-disinfected (4.20%) (χ2=19.996, P<0.001).The highest detection rate of KP was observed in high-temperature washing (15.13%, 18/119) (χ2=21.219, P<0.001), while the lowest detection rate was observed in antibacterial hand sanitizer with trichlorohydroxydiphenyl ether sanitizing factor (0, 0/60) ( χ2=21.219, P<0.001).The detection rate of KP in samples taken more than 24 hours after the last disinfection (23.08%) was higher than that in those taken at 4 to24 hours (12.90%) and less than 4 hours (4.22%) (χ2=23.398,P<0.001).ICU of general ward (OR=4.045, 95%CI: 2.206‒7.416), patient-contacted items (OR=3.113, 95%CI: 1.191‒8.141), and self-disinfection ( OR=0.241, 95%CI:0.144‒0.402) were influencing factors for KP contamination in environmental surface. From 2021 to 2023, the drug resistance rates of hospital environmental KP isolates showed an upward trend (P<0.001) to antibiotics such as ceftazidime and gentamicin. Furthermore, high drug resistance rates of KP (>90%) were observed to ciprofloxacin, levofloxacin, cefotaxime, ceftriaxone, and cefepime. ConclusionCRKP can be transmitted outward through the surfaces of objects in the patients’ surroundings, and the drug resistance situation is severe. In clinical settings, it is necessary to implement isolation measures for CRKP infection patients, to increase the frequency of disinfection for objects in their surroundings, to strengthen hand hygiene practices, and to use antibiotics appropriately.
7.Protective effects of exosomes derived from MSCs in radiation-induced lung injury
Lili WANG ; Zien YANG ; Mingyue OUYANG ; Sining XING ; Song ZHAO ; Huiying YU
Chinese Journal of Radiological Health 2025;34(1):13-20
Objective To investigate the role and related mechanisms of exosomes derived from mesenchymal stem cells (MSCs) in radiation-induced lung injury (RILI). Methods Human umbilical cord-derived MSCs were isolated and cultured for the extraction and identification of exosomes. Eighteen male SD rats were randomly divided into Control group, RILI group and RILI + exosomes group (EXO group), with 6 rats in each group. Except for Control group, the other groups received a single X-ray dose of 30 Gy to the right lung. Immediately after irradiation, the EXO group was administered 2 × 109 exosomes/kg via tail vein injection. Control group and RILI group were given the same volume of normal saline. Eight weeks post-irradiation, the rats were sacrificed, lung tissue and peripheral venous blood were collected. HE and Masson staining were employed to observe the pathological and fibrotic changes of lung tissue. The levels of serum inflammatory factors IL-6, IFN-γ, TNF-α, and IL-10 were detected by ELISA. RT-qPCR was used to assess the mRNA levels of IL-1β, IL-6, Cdh1, and Col1a1 in lung tissue. The expression levels of Vimentin and TGF-β1 in lung tissue were measured by immunohistochemical staining. The expression levels of AMPK, p-AMPK, and TGF-β1 in lung tissue were detected by Western blot. Results MSC-derived exosomes were successfully extracted and identified. Compared with RILI group, EXO group showed significantly reduced pathological changes of lung inflammation and collagen deposition. The levels of serum inflammatory factors IL-6, INF-γ, and TNF-α were significantly decreased (P < 0.05), and the level of anti-inflammatory factor IL-10 was significantly increased (P < 0.05). The mRNA levels of IL-1β, IL-6, and Col1a1 in lung tissue were significantly decreased (P < 0.05 or P < 0.01), and the mRNA level of Cdh1 was significantly increased (P < 0.05 or P < 0.01). The levels of Vimentin and TGF-β1 in lung tissue were significantly reduced, while p-AMPK level was significantly up-regulated (P < 0.05). Conclusion Exosomes derived from MSCs may alleviate RILI by inhibiting inflammatory responses and regulating epithelial-mesenchymal transition mediated by AMPK/TGF-β1 signaling pathway.
8.Research progress in small molecule inhibitors of complement factor B
Shuai WEN ; Yao ZHAO ; Yan WANG ; Xing LI ; Yi MOU ; Zheng-yu JIANG
Acta Pharmaceutica Sinica 2025;60(1):37-47
The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several diseases including paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), C3 glomerular disease (C3G) and age-related macular degeneration (AMD). Complement factor B (CFB) is a trypsin-like serine protein that circulates in the human bloodstream in a latent form. As a key node of the alternative pathway, it is an important target for the treatment of diseases mediated by the complement system. With the successful launch of iptacopan, the CFB small molecule inhibitors has become a current research hotspot, a number of domestic and foreign pharmaceutical companies are actively developing CFB small molecule inhibitors. In this paper, the research progress of CFB small molecule inhibitors in recent years is systematically summarized, the representative compounds and their activities are introduced according to structural types and design ideas, so as to provide reference and ideas for the subsequent research on CFB small molecule inhibitors.
9.Effects of Xixin Decoction (洗心汤)-Containing Serum on BV-2 Microglial Activation and Immune Inflammation Induced by Aβ25-35
Yangyang WU ; Yongchang DIWU ; Chaokai YANG ; Xia XING ; Dengkun WANG
Journal of Traditional Chinese Medicine 2025;66(7):717-723
ObjectiveTo explore the potential mechanism of Xixin Decoction (洗心汤, XD) in treating Alzheimer's disease (AD). MethodsXD-containing serum was prepared, and the BV-2 microglial cell viability was assessed using the CCK8 assay to determine the optimal intervention concentrations of XD-containing serum and amyloid-beta 25-35 (Aβ25-35) for subsequent experiments. BV-2 cells were divided into four groups, control group, model group (Aβ25-35), XD-containing serum group (Aβ25-35+ XD-containing serum), and blank serum group (Aβ25-35 + blank serum). After 24 hours of culture, the levels of interleukin-1β(IL-1β), cyclooxygenase-2 (COX-2), and arginase-2 (Arg-2) in the supernatent were detected by ELISA. Immunofluorescence staining was performed to detect the protein levels of ionized calcium-binding adaptor molecule 1 (IBA1), CD86, and CD206. RT-PCR was used to analyze the mRNA expression of IL-1β, interleukin-6 (IL-6), and interleukin-10 (IL-10). ResultsThe concentrations of 10% XD-containing serum and 40 μmol·L-¹ Aβ25-35 were selected for subsequent experiments. Compared to the control group, the model group showed significantly increased levels of IL-1β and COX-2 in the supernatant, as well as elevated protein expression of IBA1 and CD86 and increased mRNA expression of IL-1β and IL-6, while exhibiting significantly reduced levels of Arg-2 in the supernatant, CD206 protein expression, and IL-10 mRNA expression (P<0.05 or P<0.01). Compared to the model group, the XD-containing serum group showed significant improvement in all these indicators (P<0.01), whereas no statistically significant differences were observed in the blank serum group (P>0.05). ConclusionXD may regulate microglial activation, inhibit pro-inflammatory factors, and enhance anti-inflammatory factor release, thereby improving neuroimmune inflammation and inhibiting the progression of Alzheimer's disease.
10.Effects of Tongmai Yangxin Pills (通脉养心丸) on Arrhythmia and K+/Ca2+ Channel-Related Proteins and Gene Expression in Myocardial Tissue of Ischemia-Reperfusion Model Rats
Zuoying XING ; Yucai HU ; Huanhuan SONG ; Boyong QIU ; Yankun SONG ; Yongxia WANG
Journal of Traditional Chinese Medicine 2025;66(8):851-859
ObjectiveTo investigate the effects and potential mechanisms of Tongmai Yangxin Pills (通脉养心丸) (TYPs) in preventing ischemia-reperfusion (I/R)-induced arrhythmia. MethodsSixty male SD rats were randomly assigned to sham operation group, model group, amiodarone group, low-dose and high-dose TYPs group, with 12 rats in each group. The sham operation group and the model group received 10 g/(kg·d) normal saline by gavage, the amiodarone group received 60 mg/(kg·d) amiodarone, and the low-dose and high-dose TMP groups received 1 g/(kg·d) and 2 g/(kg·d) TYPs solution respectively, for 21 days, administered twice daily. On the day after the last administration, the I/R model was established in the model and medication groups by ligation of the left anterior descending coronary artery with a cannula, while the sham operation group underwent the same procedure without ligation. Electrocardiogram recordings were continuously monitored throughout the modeling process. Heart rate was recorded at five time points, before ischemia (t-0), 5-10 min after ischemia (t-1), 10-15 min after ischemia (t-2), 15-30 min after ischemia (t-3), and during the first 2 min of reperfusion (t-4); the incidence of arrhythmia including ventricular premature beats (VPB), ventricular tachycardia (VT), and ventricular fibrillation (VF) was recorded; arrhythmia scores were calculated. After 24 hours of reperfusion, left ventricular myocardial tissue was collected. Hematoxylin-eosin (HE) staining was performed to observe pathological changes. RT-PCR was used to detect the mRNA expression of microRNA-1 (miRNA-1), microRNA-133a (miRNA-133a), and potassium (K+) and calcium (Ca2+) ion channel-related genes including KCND2, KCNH2, KCNE2, KCNQ1, KCNE1, KCNJ2, CACNA1C, and CACNB1. Western blot analysis was used to measure protein levels of transient outward potassium current protein (Kv4.2), rapidly activating delayed rectifier potassium current protein (HERG), slowly activating delayed rectifier potassium current protein (KvLQT1), inward rectifier potassium current protein (Kir2.1), and L-type calcium channel protein (Cav1.2). ResultsCompared with sham operation group, the model group showed diffuse myocardial hemorrhage, inflammatory cell infiltration, myocardial necrosis, nuclear pyknosis, vacuolar degeneration, and disrupted myocardial fibers; the model group also exhibited a decreased heart rate (t-1 to t-4), increased arrhythmia scores, elevated miRNA-1 and miRNA-133a expression, and decreased mRNA expression of KCND2, KCNH2, KCNE2, KCNQ1, KCNE1, KCNJ2, CACNA1C, and CACNB1 in myocardial tissue; additionally, Kv4.2, HERG, KvLQT1, Kir2.1, and Cav1.2 protein levels significantly reduced (P<0.01). Compared to the model group, all medication-treated groups showed reduced myocardial damage, including less hemorrhage, reduced inflammatory infiltration, and improved myocardial structure, with the high-dose TYPs group exhibiting the most significant improvement; the amiodarone group and high-dose TYPs group showed a significant increase in heart rate (t-1 to t-4), lower arrhythmia scores, reduced miRNA-1 and miRNA-133a expression; the high-dose TYPs group exhibited significantly increased mRNA expression levels of KCND2, KCNH2, KCNQ1, KCNJ2, and CACNA1C, as well as elevated protein levels of Kv4.2, HERG, KvLQT1, Kir2.1, and Cav1.2 (P<0.05 or P<0.01). ConclusionTMPs can improve myocardial damage and reduce the incidence of ventricular arrhythmia in I/R rats. The underlying mechanism may be related to the downregulation of miRNA-1 and miRNA-133a gene expression, as well as the upregulation of K+ and Ca2+ channel-related genes and proteins.

Result Analysis
Print
Save
E-mail