1.Guideline for the workflow of clinical comprehensive evaluation of drugs
Zhengxiang LI ; Rong DUAN ; Luwen SHI ; Jinhui TIAN ; Xiaocong ZUO ; Yu ZHANG ; Lingli ZHANG ; Junhua ZHANG ; Hualin ZHENG ; Rongsheng ZHAO ; Wudong GUO ; Liyan MIAO ; Suodi ZHAI
China Pharmacy 2025;36(19):2353-2365
OBJECTIVE To standardize the main processes and related technical links of the clinical comprehensive evaluation of drugs, and provide guidance and reference for improving the quality of comprehensive evaluation evidence and its transformation and application value. METHODS The construction of Guideline for the Workflow of Clinical Comprehensive Evaluation of Drugs was based on the standard guideline formulation method of the World Health Organization (WHO), strictly followed the latest definition of guidelines by the Institute of Medicine of the National Academy of Sciences of the United States, and conformed to the six major areas of the Guideline Research and Evaluation Tool Ⅱ. Delphi method was adopted to construct the research questions; research evidence was established by applying the research methods of evidence-based medicine. The evidence quality classification system of the Chinese Evidence-Based Medicine Center was adopted for evidence classification and evaluation. The recommendation strength was determined by the recommendation strength classification standard formulated by the Oxford University Evidence-Based Medicine Center, and the recommendation opinions were formed through the expert consensus method. RESULTS & CONCLUSIONS The Guideline for the Workflow of Clinical Comprehensive Evaluation of Drugs covers 4 major categories of research questions, including topic selection, evaluation implementation, evidence evaluation, and application and transformation of results. The formulation of this guideline has standardized the technical links of the entire process of clinical comprehensive evaluation of drugs, which can effectively guide the high-quality and high-efficient development of this work, enhance the standardized output and transformation application value of evaluation evidence, and provide high-quality evidence support for the scientific decision-making of health and the rationalization of clinical medication.
2.Effects of different processing methods on traits and chemical constituents of Forsythiae Fructus.
Rong-Rong XU ; Rui LI ; Chu-Han ZHANG ; Wei TIAN ; Xin-Guo WANG ; Li-Ying NIU ; Wei FENG
China Journal of Chinese Materia Medica 2025;50(2):465-471
This study aims to investigate the correlations of the appearance traits, total antioxidant capacity, and component content of Forsythiae Fructus processed by different methods, explore the effects of different processing methods on the abovementioned three aspects of Forsythiae Fructus, and screen out the internal and external indicators that have important effects on its quality. It determined the length, diameter, stem length, chroma value L~*, a~*, b~*, and other appearance indexes and antioxidant activity of Forsythiae Fructus processed by different methods. The content of forsythiaside A, rutin, forsythin, pinoresinol, and phillygenin was determined by ultra performance liquid chromatography(UPLC). Correlation analysis, principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and independent sample t-test analysis were performed on the appearance indexes and the component content. The correlation analysis showed that there were differences in the appearance traits and the component content. L~* and E~* had highly significant negative correlations with pinoresinol and phillygenin(P<0.01) and significant positive correlations with forsythiaside A(P<0.05). There were a highly significant negative correlation between a~* and forsythiaside A(P<0.01) and highly significant positive correlations of a~* with pinoresinol and phillygenin(P<0.01). There were a highly significant positive correlation between b~* and forsythiaside A(P<0.01) and highly significant negative correlations of b~* with pinoresinol and phillygenin(P<0.01). The total antioxidant capacity had highly significant negative correlations with pinoresinol and phillygenin(P<0.01). The PCA results showed that there were differences among Forsythiae Fructus samples processed by different methods. OPLS-DA marked five important indicators, which were forsythiaside A, stem length, E~*, L~*, and b~*. The results of independent sample t-test showed that the content of forsythiaside A, pinoresinol, and phillygenin, the total antioxidant capacity, and the appearance traits such as L~*, a~*, b~*, and E~* were significantly different between the Forsythiae Fructus samples processed by steaming and boiling(P<0.05). According to content determination and a related biological activity analysis, steaming is a good choice from the perspective of improving the stability of chemical constituents and antioxidant activity of Forsythiae Fructus. From the point of view of improving the stability of chemical constituents and anti-inflammatory and anti-cancer activities of Forsythiae Fructus, it is recommended to use boiling as the processing method. Based on the above analysis methods, the main indexes for the appearance traits of Forsythiae Fructus processed by different methods are powder chroma value(L~*, a~*, b~*, E~*), stem length, and total antioxidant capacity, and those for chemical constituents are the content of forsythiaside A, pinoresinol, and phillygenin. This study provides reference for seeking scientific processing methods of Forsythiae Fructus.
Forsythia/chemistry*
;
Drugs, Chinese Herbal/isolation & purification*
;
Fruit/chemistry*
;
Antioxidants/analysis*
;
Chromatography, High Pressure Liquid
;
Glycosides/analysis*
;
Principal Component Analysis
;
Furans
;
Lignans
3.Effect and mechanism of combined use of active components of Buyang Huanwu Decoction in ameliorating neuronal injury induced by OGD/R.
Cun-Yan DAN ; Meng-Wei RONG ; Xiu LOU ; Tian-Qing XIA ; Bao-Guo XIAO ; Hong GUO ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(4):1098-1110
Buyang Huanwu Decoction(BYHWD), as one of the classic formulas in traditional Chinese medicine(TCM) for the treatment of cerebral ischemic stroke(CIS), has demonstrated definite effects in clinical practice. However, the material basis and mechanism of treatment have not been systematically elucidated. This study employed network pharmacology and molecular docking to analyze the potential targets and mechanisms of blood-and brain-penetrating active components of BYHWD in reducing cell apoptosis in CIS. Cell experiments were then carried out to validate the prediction results. In the experiments, five active components including hydroxysafflor yellow A( HSYA), tetramethylpyrazine( TMP), astragaloside Ⅳ( AS-Ⅳ), amygdalin( AMY), and paeoniflorin(PF) were selected to explore the pharmacological effects of BYHWD. HT22 cells were treated with BYHWD, and the cell counting kit-8(CCK-8) method was employed to examine the toxic and side effects of BYHWD. A cell model of oxygen-glucose deprivation/reoxygenation( OGD/R) was constructed, with apoptosis and pyroptosis as the main screening indicators. The levels of lactate dehydrogenase(LDH) and glutathione(GSH) were measured to assess the cell membrane integrity. Flow cytometry was employed to detect apoptosis, and the activities of caspase-3 and caspase-1 were measured to clarify the status of apoptosis and pyroptosis. ELISA was employed to determine the levels of interleukin(IL)-1β and IL-18 to confirm pyroptosis. HSYA and AMY were identified in this study as the active components regulating apoptosis and pyroptosis. TUNEL was employed to detect the apoptosis rate, and Western blot was employed to determine the expression levels of apoptosis-related proteins B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3, which confirmed that the anti-apoptotic effect of the combined component group was superior to that of the single component groups. The molecular docking results revealed strong binding affinity of HSYA and AMY with SDF-1α and CXCR4.AMD3100, a selective antagonist of CXCR4, was then used for intervention. The results of Western blot showed alterations in the expression levels of apoptosis-associated proteins, SDF-1α, and CXCR4. In conclusion, HSYA and AMY influence cellular apoptosis by modulating the SDF-1α/CXCR4 signaling cascade.
Drugs, Chinese Herbal/chemistry*
;
Apoptosis/drug effects*
;
Animals
;
Neurons/cytology*
;
Mice
;
Molecular Docking Simulation
;
Cell Line
;
Glucose/metabolism*
;
Humans
;
Neuroprotective Agents/pharmacology*
4.A method for quality control of Angelicae Dahuricae Radix derived from different plants based on UPLC characteristic fingerprints, chemometrics, and QAMS.
Tian-Hua DUAN ; Rong-Rong XU ; Rui LI ; Chu-Han ZHANG ; Xin-Guo WANG ; Wei FENG
China Journal of Chinese Materia Medica 2025;50(4):1051-1062
The ultra-high performance liquid chromatography( UPLC) characteristic fingerprints of Angelica dahurica and A. dahurica var. formosana were established. The compounds corresponding to common peaks were identified by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry( UPLC-Q-TOF-MS/MS). The results were combined with chemometrics and quantitative analysis of multi-components with a single-marker method(QAMS) to study the quality control of A. dahurica and A. dahurica var. formosana. The separation was performed on a Titank C_(18) column(2. 1 mm × 150 mm, 1. 8 μm)with a mobile phase of acetonitrile-0. 2% formic acid at a flow rate of 0. 3 m L·min~(-1). The column temperature was 35 ℃ and the injection volume was 1. 2 μL. Seven batches of A. dahurica and 11 batches of A. dahurica var. formosana were injected and analyzed. The UPLC characteristic fingerprints of A. dahurica and A. dahurica var. formosana were established according to the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine( version 2012), and 19 and 20 characteristic peaks were matched respectively. The common peaks were identified by reference substance comparison and UPLC-Q-TOF-MS/MS. Cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA)were performed to analyze the chemical pattern recognition of A. dahurica and A. dahurica var. formosana. The results of CA and PCA could distinguish Angelicae Dahuricae Radix from different producing areas, and the differential quality markers of A. dahurica and A. dahurica var. formosana were obtained by OPLS-DA. With imperatorin as the internal reference, the relative correction factors of oxypeucedanin hydrate, byakangelicin, bergapten, isopimpinellin, oxypeucedanin, and isoimperatorin were 1. 310, 1. 069, 0. 729, 0. 633, 0. 753, and 1. 010, respectively. There was no significant difference between the QAMS and external standard method(ESM)results of each component, indicating that the QAMS established with imperatorin as the internal reference was accurate and reliable. The characteristic fingerprints, chemometrics, and QAMS established in this study can quickly and efficiently control the quality of A. dahurica and A. dahurica var. formosana.
Quality Control
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Angelica/chemistry*
;
Chemometrics/methods*
;
Tandem Mass Spectrometry/methods*
;
Principal Component Analysis
5.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
6.Analysis of clinical characteristics and influencing factors of patients with postmenopausal osteoporosis combined with dyslipidemia.
Rong XIE ; Li-Guo ZHU ; Zi-Kai JIN ; Tian-Xiao FENG ; Ke ZHAO ; Da WANG ; Ling-Hui LI ; Xu WEI
China Journal of Orthopaedics and Traumatology 2025;38(5):487-493
OBJECTIVE:
To explore the co-morbid influencing factors of postmenopausal osteoporosis(PMOP) and dyslipidemia, and to provide evidence-based basis for clinical co-morbidity management.
METHODS:
Based on the 2017 to 2018 Beijing community cross-sectional survey data, PMOP patients were included and divided into the dyslipidemia group and the uncomplicated dyslipidemia group according to whether they were comorbid with dyslipidemia. Demographic characteristics, living habits and disease history were collected through questionnaires, and bone mineral density and bone metabolism biomarkers (osteocalcin, blood calcium, serum typeⅠprocollagen N-terminal prepeptide, etc.) were detected on site. Co-morbidity risk factors were analyzed using binary logistic regression.
RESULTS:
Three hundred and twenty patients with PMOP were included, including the comorbid group (75 patients) and the uncomplicated group (245 patients). The results showed that history of cardiovascular disease [OR=1.801, 95%CI(1.003, 3.236), P=0.049], history of cerebrovascular disease [OR=2.923, 95%CI(1.460, 5.854), P=0.002], frying and cooking methods[OR=5.388, 95%CI(1.632, 17.793), P=0.006], OST results[OR=0.910, 95%CI(0.843, 0.983), P=0.016], and blood Ca results [OR=60.249, 95%CI(1.862, 1 949.926), P=0.021] were the influencing factors of PMOP complicated with dyslipidemia.
CONCLUSION
Focus should be placed on the influencing factors of PMOP and dyslipidemia co-morbidities, with emphasis on multidimensional assessment, combining lifestyle interventions with bone metabolism marker monitoring to optimize co-morbidity management.
Humans
;
Dyslipidemias/epidemiology*
;
Female
;
Middle Aged
;
Osteoporosis, Postmenopausal/metabolism*
;
Aged
;
Cross-Sectional Studies
;
Risk Factors
;
Bone Density
7.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
8.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
9.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
10.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail