1.Combined Therapy of Traditional Chinese and Western Medicine for Hepatitis B Virus Infection: A Review
Xuan WU ; Hui LI ; Jian HUANG ; Xikun YANG ; Yan ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):279-288
Hepatitis B virus (HBV) infection is the primary cause of viral hepatitis and represents a substantial disease burden in China. However, effective and safe agents capable of completely eliminating HBV DNA are still lacking. In modern medicine, anti-HBV strategies mainly target covalently closed circular DNA (cccDNA), among other mechanisms, and multiple novel drugs are currently under clinical investigation. Traditional medicine has been shown to exert anti-HBV effects through direct pathways, such as blocking viral entry, as well as indirect pathways, including the regulation of programmed cell death. Studies have confirmed that the integration of traditional Chinese medicine (TCM) and Western medicine in treating HBV infection and its related complications offers complementary advantages, particularly in enhancing HBV clearance rates, improving liver function, preventing various complications, and delaying the progression from hepatic fibrosis to hepatocellular carcinoma. This review focuses on advances in anti-HBV research involving TCM, Western medicine, and their integrated application, aiming to provide a basis for integrated HBV therapy and new drug development.
2.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
3.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
4.Effects of subanesthetic dose of esketamine on postoperative anxiety and recovery in patients undergoing laparo-scopic cholecystectomy
Zhangzhen ZHONG ; Xian ZHENG ; Ting XU ; Jie WANG ; Hui CAO ; Xinggen ZHOU ; Hui LI ; Jiacheng ZHAO ; Hui LIU ; Chao ZHANG
China Pharmacy 2026;37(2):204-209
OBJECTIVE To investigate the effects of subanesthetic dose of esketamine on postoperative anxiety and recovery in patients undergoing laparoscopic cholecystectomy. METHODS A total of 200 patients scheduled for laparoscopic cholecystectomy at Suzhou Ninth Hospital Affiliated to Soochow University from January 2023 to December 2024 were randomly assigned to control group (n=100) and observation group (n=100). One minute before the initiation of anesthesia, patients in the control group received intravenous injections of Propofol emulsion injection, Sufentanil citrate injection, and Succinylcholine chloride injection. On this basis, patients in the observation group received an intravenous injection of Esketamine hydrochloride injection. The anxiety status of patients in both groups was compared, along with their general intraoperative conditions (including sufentanil dosage, duration of pneumoperitoneum, operative time, anesthesia time, and extubation time), postoperative recovery, incidence of adverse reactions, and the need for dezocine rescue analgesia. Heart rate and mean arterial pressure, entropy index (state entropy and response entropy), inflammatory marker levels [interleukin-6 (IL-6) and C-reactive protein (CRP)], numerical rating scale (NRS) for pain intensity were compared between the two groups at different time points. RESULTS No significant differences were found between the two groups in pneumoperitoneum duration, operative time, anesthesia time,extubation time, incidence of postoperative dry mouth, entropy index or length of stay in the post-anesthesia care unit (P>0.05). Compared with the control group, the observation group showed significantly lower postoperative STAI-S scores, reduced intraoperative sufentanil consumption, decreased incidence of postoperative nausea, vomiting, and shivering, the need for dezocine rescue analgesia, as well as lower plasma IL-6 and CRP levels at 24 h after surgery, and NRS (P<0.05). The heart rate and mean arterial pressure of patients in the observation group at the start of surgery, end of surgery, and during extubation were all significantly higher than those in the control group (P<0.05). CONCLUSIONS Subanesthetic dose of esketamine can effectively alleviate postoperative anxiety, reduce intraoperative opioid consumption, suppress postoperative inflammatory response, relieve postoperative pain, and promote recovery in patients undergoing laparoscopic cholecystectomy.
5.Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma
Haojun ZHANG ; Hongyi LI ; Hui ZHANG ; Haoran CHEN ; Lizhong ZHANG ; Jie GENG ; Chuandong HOU ; Qi YU ; Peifeng HE ; Jinpeng JIA ; Xuechun LU
Chinese Journal of Tissue Engineering Research 2025;29(7):1448-1456
BACKGROUND:Osteosarcoma has a complex pathogenesis and a poor prognosis.While advancements in medical technology have led to some improvements in the 5-year survival rate,substantial progress in its treatment has not yet been achieved. OBJECTIVE:To screen key molecular markers in osteosarcoma,analyze their relationship with osteosarcoma treatment drugs,and explore the potential disease mechanisms of osteosarcoma at the molecular level. METHODS:GSE99671 and GSE284259(miRNA)datasets were obtained from the Gene Expression Omnibus database.Differential gene expression analysis and Weighted Gene Co-expression Network Analysis(WGCNA)on GSE99671 were performed.Functional enrichment analysis was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes separately for the differentially expressed genes and the module genes with the highest positive correlation to the disease.The intersection of these module genes and differentially expressed genes was taken as key genes.A Protein-Protein Interaction network was constructed,and correlation analysis on the key genes was performed using CytoScape software,and hub genes were identified.Hub genes were externally validated using the GSE28425 dataset and text validation was conducted.The drug sensitivity of hub genes was analyzed using the CellMiner database,with a threshold of absolute value of correlation coefficient|R|>0.3 and P<0.05. RESULTS AND CONCLUSION:(1)Differential gene expression analysis identified 529 differentially expressed genes,comprising 177 upregulated and 352 downregulated genes.WGCNA analysis yielded a total of 592 genes with the highest correlation to osteosarcoma.(2)Gene Ontology enrichment results indicated that the development of osteosarcoma may be associated with extracellular matrix,bone cell differentiation and development,human immune regulation,and collagen synthesis and degradation.Kyoto Encyclopedia of Genes and Genomes enrichment results showed the involvement of pathways such as PI3K-Akt signaling pathway,focal adhesion signaling pathway,and immune response in the onset of osteosarcoma.(3)The intersection analysis revealed a total of 59 key genes.Through Protein-Protein Interaction network analysis,8 hub genes were selected,which were LUM,PLOD1,PLOD2,MMP14,COL11A1,THBS2,LEPRE1,and TGFB1,all of which were upregulated.(4)External validation revealed significantly downregulated miRNAs that regulate the hub genes,with hsa-miR-144-3p and hsa-miR-150-5p showing the most significant downregulation.Text validation results demonstrated that the expression of hub genes was consistent with previous research.(5)Drug sensitivity analysis indicated a negative correlation between the activity of methotrexate,6-mercaptopurine,and pazopanib with the mRNA expression of PLOD1,PLOD2,and MMP14.Moreover,zoledronic acid and lapatinib showed a positive correlation with the mRNA expression of PLOD1,LUM,MMP14,PLOD2,and TGFB1.This suggests that zoledronic acid and lapatinib may be potential therapeutic drugs for osteosarcoma,but further validation is required through additional basic experiments and clinical studies.
6.Effects of microstructured bone implant material surfaces on osteogenic function of MC3T3-E1 osteoblasts
Liping HUANG ; Hui LI ; Xinge WANG ; Rui WANG ; Bei CHANG ; Shiting LI ; Xiaorong LAN ; Guangwen LI
Chinese Journal of Tissue Engineering Research 2025;29(10):1990-1996
BACKGROUND:The micro/nanostructured gradient biomimetic surface of implant materials can simulate the structure of the extracellular environment in human bone tissue,thereby achieving perfect bone integration function.However,further research is needed on the mechanisms by which the surface microstructure of bone implant materials regulates cell function and promotes osteogenesis. OBJECTIVE:To analyze the effect of titanium sheet microstructure surface on osteogenic differentiation of MC3T3-E1 osteoblasts. METHODS:(1)At a constant voltage of 5 V or 20 V,nanotube arrays of different diameters were prepared on the surface of titanium sheets by acid etching and anodic oxidation techniques,and were recorded as group R5 and group R20,respectively.The surface morphology,roughness,and hydrophilicity of pure titanium sheet(without acid etching or anodizing treatment)were measured in group R5 and group R20.(2)MC3T3-E1 osteoblasts of logarithmic growth stage were inoculated on the surface of pure titanium sheets,R5 group and R20 group respectively.After 24 hours of osteogenic induction culture,the expression of mechanical sensitive channel protein 1 was analyzed by RT-PCR and immunofluorescence staining.Osteoblast inducible base with or without the mechanosensitive channel protein 1 activator Yada1 was added,and alkaline phosphatase staining was performed after 7 days of culture.Alizarin red staining was performed after 14 days of culture. RESULTS AND CONCLUSION:(1)The surface of pure titanium sheets was smooth under scanning electron microscope.Relatively uniform and orderly nanotube arrays with average diameters of about 30 nm and 100 nm were observed on the surface of titanium sheets of groups R5 and R20,respectively.The results of scanning electron microscope were further verified by atomic force microscopy.The surface roughness of titanium sheet of group R5 was higher than that of pure titanium(P<0.05),and the water contact angle was lower than that of pure titanium(P<0.05).The surface roughness of titanium sheet in group R20 was higher than that in group R5(P<0.05),and the water contact angle was lower than that in group R5(P<0.05).(2)RT-PCR and immunofluorescence staining showed that the expression of mechanosensitive channel protein 1 in group R5 was higher than that in pure titanium group(P<0.05),and the expression of mechanosensitive channel protein 1 in group R20 was higher than that in group R5(P<0.05).Under the osteogenic induction,compared with the condition without Yada1,there were no significant changes in the activity of alkaline phosphatase and the deposition of calcified nodules in pure titanium group after Yada1 addition,while the activity of alkaline phosphatase and the deposition of calcified nodules in groups R5 and R20 after Yada1 addition were significantly increased(P<0.05).With or without Yada1,the alkaline phosphatase activity and calcified nodule deposition in group R5 were higher than those in pure titanium group(P<0.05),and the alkaline phosphatase activity and calcified nodule deposition in group R20 were higher than those in group R5(P<0.05).(3)The results show that the surface microstructure of titanium sheet can promote the osteogenic differentiation of osteoblast MC3T3-E1 by activating mechanosensitive channel protein 1.
7.Action mechanisms and application pathways of biomaterials in promoting corneal alkali burn repair
Hui XIAO ; Dongyan LI ; Jing JI ; Lizhen WANG
Chinese Journal of Tissue Engineering Research 2025;29(10):2162-2170
BACKGROUND:Traditional treatments for corneal alkali burns are limited,especially in controlling inflammation,preventing neovascularization,and inhibiting corneal scarring.Natural,synthetic,or composite materials provide a wide range of treatment options.However,the mechanism by which biomaterials promote corneal alkali burn repair has not yet been systematically understood. OBJECTIVE:To summarize the current research on biomaterials in promoting corneal alkali burn repair in and outside China,and review the mechanism and application of biomaterials in repairing corneal alkali burn. METHODS:The first author searched"cornea,alkali burn,amniotic membrane,hyaluronic acid,collagen,chitosan,polymer materials"as Chinese keywords and"amniotic membrane,hyaluronic acid,collagen,chitosan,polymer,cornea,alkali burn"as English keywords in PubMed,Web of Science,CNKI,and WanFang databases.According to inclusion and exclusion criteria,76 eligible articles were finally included for review. RESULTS AND CONCLUSION:(1)In the field of corneal alkali burn repair,biomaterials such as amniotic membrane,hyaluronic acid,collagen,chitosan,and degradable polymer materials have been widely studied and applied.Each of these biomaterials has its own characteristics,advantages,and disadvantages,and stands out in different aspects.(2)First and foremost,amniotic membranes are considered one of the most promising biomaterials due to their abundance of bioactive factors.They are biocompatible and can regulate the corneal inflammatory response.However,there are issues with donor shortages and susceptibility to infectious diseases.(3)Hyaluronic acid has good moisturizing properties and biocompatibility,and is able to improve the survival rate of corneal cells and increase corneal transparency.(4)The good biocompatibility and scaffold structure of collagen enable the promotion of corneal cell adhesion and proliferation,as well as the reconstruction of corneal tissue structure.(5)Chitosan is recognized for its good biocompatibility and degradability,making it suitable as a carrier for drug delivery and cell transplantation.(6)Degradable polymer materials have good controllability over degradation and can provide a good support and delivery platform for the repair of corneal alkali burns,but further research is needed on their stability and biocompatibility.(7)Overall,there is currently no single biomaterial that can completely address the repair problem of corneal alkali burns,and each biomaterial has its own specific application scenarios and limitations.(8)Future research directions should focus on further improving the properties and structure of biomaterials,exploring more effective combination applications,and deeply understanding the interaction mechanism between biomaterials and corneal tissue,in order to enhance the therapeutic effect of corneal alkali burns and the quality of life of patients.
8.Mogroside Ⅴ promotes osteogenic differentiation of bone marrow mesenchymal stem cells by modulating M1 polarization of macrophages under high glucose condition
Zhimao YE ; Jiuying HUI ; Xiaoxia ZHONG ; Yuying MAI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):3968-3975
BACKGROUND:The diabetic microenvironment can cause excessive M1 polarization of macrophages,and this hyperglycemic inflammatory state can inhibit osteogenic differentiation of bone marrow mesenchymal stem cells,thus affecting the healing of diabetic bone defects.Studies have indicated that mogroside V possesses anti-inflammatory,antioxidant,and hypoglycemic properties.However,its potential to modulate M1 polarization of macrophages and osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose and inflammatory condition remains unclear. OBJECTIVE:To explore the effect of mogroside V on regulating M1 macrophage polarization and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose and inflammatory condition. METHODS:Murine diabetic models were established using C57BL/6 mice.Bone marrow-derived macrophages were isolated from tibia and fibula of normal and diabetic mice,and cultured in low-glucose and high-glucose media.Then M1 polarization of bone marrow-derived macrophages was induced using lipopolysaccharide and interferon-γ.Bone marrow-derived macrophages were treated with 160,320,and 640 μmol/L mogroside V.Flow cytometry was employed to determine the proportion of F4/80+CD86+cells.qRT-PCR was utilized to assess mRNA expression levels of inducible nitric oxide synthase,interleukin 1β,and interleukin 6.ELISA was employed to evaluate tumor necrosis factor-α secretion in bone marrow-derived macrophage supernatants.Bone marrow mesenchymal stem cells were isolated from tibia and fibula of C57BL/6 suckling mice,and induced osteogenic differentiation using low-or high-glucose osteogenic induction medium.Bone marrow mesenchymal stem cells were treated with M1 macrophage-conditioned mediums with or without 320 μmol/L mogroside V in osteogenic differentiation process.qRT-PCR was employed to assess the mRNA expression of alkaline phosphatase,Runt-related factor 2,osteocalcin,and osteopontin on day 14 after osteogenic induction.Alizarin red staining and quantitative analysis were conducted to evaluate calcium deposition on day 21 after osteogenic induction. RESULTS AND CONCLUSION:(1)Flow cytometry results showed that with the treatment of 320 and 640 μmol/L mogroside V,the proportion of F4/80+CD86+bone marrow-derived macrophages was significantly lower than that in the high-glucose control group(P<0.05).(2)qRT-PCR results showed that with the treatment of 160,320,and 640 μmol/L mogroside V,the mRNA expression levels of inducible nitric oxide synthase and interleukin 6 were significantly lower than that in the high-glucose control group(P<0.05).With the treatment of 320 and 640 μmol/L mogroside V,the mRNA expression level of interleukin 1β was significantly lower than that in the high-glucose control group(P<0.05).(3)ELISA results exhibited that with the treatment of 160,320,and 640 μmol/L mogroside V,the tumor necrosis factor-α secretion level was significantly lower than that in the high-glucose control group(P<0.05).(4)With the treatment of 320 μmol/L mogroside V,calcium salt deposition was increased in bone marrow mesenchymal stem cells under high glucose and inflammatory conditions(P<0.05),and the mRNA relative expression levels of alkaline phosphatase,Runt-related factor 2,and osteopontin were increased(P<0.05).These findings indicate that mogroside V can promote osteogenic differentiation of bone marrow mesenchymal stem cells by inhibiting the M1 polarization of bone marrow-derived macrophages under high glucose and inflammatory conditions and reducing the generation of inflammatory factors.
9.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
10.Chinese Materia Medica by Regulating Nrf2 Signaling Pathway in Prevention and Treatment of Ulcerative Colitis: A Review
Yasheng DENG ; Lanhua XI ; Yanping FAN ; Wenyue LI ; Tianwei LIANG ; Hui HUANG ; Shan LI ; Xian HUANG ; Chun YAO ; Guochu HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):321-330
Ulcerative colitis(UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulceration of the colonic mucosa and submucosa, and its complex pathogenesis involves immune abnormality, oxidative stress and other factors. The nuclear transcription factor E2-related factor 2(Nrf2), encoded by the Nfe212 gene, plays a central role in antioxidant responses. It not only activates various antioxidant response elements such as heme oxygenase-1(HO-1) and quinone oxidoreductase 1(NQO1), but also enhances the activity of glutathione-S-transferase(GST) and superoxide dismutase 1(SOD1), effectively eliminating reactive oxygen species(ROS) accumulated in the body, and mitigating oxidative stress-induced damage to intestinal mucosa. In addition, Nrf2 can reduce the release of inflammatory factors and infiltration of immune cells by regulating immune response, cell apoptosis and autophagy pathways, thereby alleviating intestinal inflammation and promoting the repair and regeneration of damaged mucosa. Based on this, this paper reviews the research progress of Chinese materia medica in the prevention and treatment of UC by modulating the Nrf2 signaling pathway. It deeply explores the physiological role of Nrf2, the molecular mechanism of activation, the protective effect in the pathological process of UC, and how active ingredients in Chinese materia medica regulate the Nrf2 signaling pathway through multiple pathways to exert their potential mechanisms. These studies have revealed in depth that Chinese materia medica can effectively combat oxidative stress by regulating the Nrf2 signaling pathway. It can also play a role in anti-inflammatory, promoting autophagy, inhibiting apoptosis, protecting the intestinal mucosal barrier, and promoting intestinal mucosal repair, providing new ideas and methods for the multi-faceted treatment of UC.

Result Analysis
Print
Save
E-mail