1.Bioinformatic analysis of small RNA expression during chondrogenesis in rats
Shibin SHAO ; Zixin MIN ; Yuanxu GUO ; Quancheng WANG ; Mengyao SUN ; Yan HAN ; Jian SUN
Journal of Xi'an Jiaotong University(Medical Sciences) 2015;(4):462-466
Objective To study the profiles and function of small RNA (sRNA)gene during chondrogenesis in rats so as to clarify the mechanisms of chondrocytes proliferation and differentiation.Methods All the sRNAs were identified from the female SD rats femoral head cartilages at three time points:at birth,ablactation and maturation,and three sRNA libraries were constructed.The Solexa sequencing and the bioinformatics analysis were employed to be blasted with the genomes of SD rats.Results The perfect match reads in the three libraries were screened out,which were correspondent to the 21 7 921 (41.23%),1 96 650 (38.74%)and 245 436 (41.54%)unique sRNA sequence,respectively.The percentages of 20-24 nt sRNA were 71.94% (d0),72.85% (d21),and 86.39%(d42).Half of clean sequences were 22 nt sRNA.The distribution characteristics of the reads were in line with the high-quality sRNA.More than 62% clean reads were from mature miRNA while the ratios in the three libraries were only 0.69%,0.78% and 0.63%.About 60% of the unique sRNA could not be matched with miRBase20.0 or Rfam9.1.Conclusion The distribution model of miRNA in the three libraries indicates that the miRNAs with different functions or from different sources are involved in the regulation of chondrocytes proliferation and differentiation in bone development and formation.
2.Comparison between Let-7a and U6 as an internal reference for RT-qPCR of miRNAs in rat cartilage
Lin YI ; Hua GUO ; Dongxian GUO ; Zixin MIN ; Ying YUAN ; Yitong ZHAO ; Yan HAN ; Nannan ZHONG ; Jian SUN
Journal of Xi'an Jiaotong University(Medical Sciences) 2017;38(4):497-501,535
Objective To evaluate the stability of U6 and let-7a as internal reference genes of miRNAs in RTqPCR by using femoral head samples of cartilage tissue from inbred DA rats.Methods Total RNA was extracted from femoral head cartilage tissues of female DA rats at three different time points,i.e.at birth (D0),ablactation (D21) and maturation (D42).The expressions of different miRNAs (miR-1,-25,-26a,-140,-146a,-150,-181a,-195,-223 and-337) were detected by RT-qPCR using U6 or let-7a as the internal reference.The two sets of miR expression were compared with the results from Solexa sequencing in our pioneer work to evaluate the stability of the two internal references.Results The relative values of U6 (P =0.045) and let-7a (P =0.021 5) revealed significant difference in the D42 sample.Both in U6 and let-7a systems,miR-26a,-140,-223,and-337 showed a similar tendency in expression and quantification but miR-1 and-146a did not have significant differences.miR-25,-150,-181a and-195 differed significantly (P<0.05).Comparison of absolute quantification results between the two generations' sequencing showed that let-7a is more stable than U6.Conclusion Let-7a is more suitable to be used as the internal reference gene in RT-qPCR for miRNAs in cartilage tissue.
3.Study of the predictive role of serum HBV RNA on HBeAg serological conversion in children with chronic hepatitis B
Jiaojiao XU ; Ce SHI ; Xueqi HONG ; Fang CHU ; Qingkui BAI ; Jing WANG ; Yanmin SHI ; Zixin GUO ; Xinrui ZHANG ; Fuchuan WANG ; Min ZHANG ; Xiaotong CHANG ; Xiuchang ZHANG ; Yanwei ZHONG
Chinese Journal of Hepatology 2023;31(11):1182-1186
Objective:To investigate the role of serum hepatitis B virus RNA (HBV RNA) in predicting HBeAg serological conversion in children with chronic hepatitis B.Methods:175 children aged 1~17 years with chronic hepatitis B who received interferon α (IFNα) for 48 weeks were selected. Patients were divided into HBeAg seroconversion and non-conversion based on whether HBeAg seroconversion occurred at 48 weeks of treatment.T-test and Mann-Whitney U test were used to compare between groups; chisquare test or Fisher exact probability method was used to compare the frequency between groups of classified variables; and Pearson correlation was used to analyze the correlation between indicators. Univariate and multivariate logistic regression analyses were used to identify influencing factors associated with HBeAg serological conversion. The predictive effect of HBV RNA, HBV DNA, and HBsAg on HBeAg serological conversion was compared and analyzed by the receiver operating characteristic curve (ROC).Results:The seroconversion rate of HBeAg at 48 weeks was 36.0% (63/175). The reduction in HBVRNA levels from baseline to the 12th, 24th, 36th, and 48th weeks of antiviral therapy was significantly greater in the HBeAg serological conversion group than that in the non-conversion group, and the difference was statistically significant between the two groups (P < 0.05). Univariate and multivariate regression analyses showed that age and a decline in HBV RNA levels at week 12 were independent predictors of HBeAg serological conversion. The area under the ROC curve (AUROC) of HBV RNA decline at week 12 was 0.677(95% CI∶0.549-0.806, P = 0.012), which was significantly better than the same period of AUROC of HBV DNA (0.657, 95% CI∶0.527-0.788, P = 0.025) and HBsAg (0.660, 95% CI∶0.526-0.795, P = 0.023) decline. HBV RNA levels decreased (>1.385 log10 copies/ml) at week 12, with a positive predictive value of 53.2%, a negative predictive value of 72.2%, a sensitivity of 77.4%, and a specificity of 57.9% for HBeAg seroconversion. Conclusion:HBV RNA level lowering during the 12th week of antiviral therapy can serve as an early predictor marker for HBeAg serological conversion in children with chronic hepatitis B.
4.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
5.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.