1.Mucosal Immunity of IgA Nephropathy and Treatment from Pharynx
Mingming ZHAO ; Yu ZHANG ; Liusheng LI ; Zikai YU
Chinese Journal of Information on Traditional Chinese Medicine 2017;24(7):15-18
IgA nephropathy is a common primary glomerulopathy; the main clinical manifestation is hematuria, with or without proteinuria. However, the pathogenesis associated with mucosal immunity is not completely clear. At present, modern medical treatment delays the progression of IgA nephropathy mainly by controlling blood pressure, reducing proteinuria and delaying renal function failure. The method of combination of disease and syndrome of TCM has received satisfactory efficacy in the treatment of IgA nephropathy. Based on the relationship between mucosal immune and treated from pharynx, this article investigated the occurrence, development and treatment of IgA nephropathy.
2.The robot-assisted system YunSRobot for soft endoscopy: a trial of remote manipulation on simulation models
Bin YAN ; Hao LIU ; Yunsheng YANG ; Yongming YANG ; Lihua PENG ; Fei PAN ; Wei JIANG ; Tao YU ; Yuanyuan ZHOU ; Xiao HE ; Lei WANG ; Jianfeng LI ; Xiaoxiao WANG ; Xiuli ZHANG ; Zikai WANG ; Shufang WANG ; Yichao SHI ; Weifeng WANG ; Jing YANG ; Xiangdong WANG
Chinese Journal of Internal Medicine 2018;57(12):901-906
Objective To evaluate the feasibility and safety of the robot - assisted system YunSRobot for remote manipulation endoscopy. Methods When the master of YunSRobot was installed in the gastroenterology office in Chinese PLA General Hospital, the robot slave and upper gastrointestinal simulation model (Takahashi Lm103,Japan) were installed at the same time in the State Key Laboratory of Robotics, Shenyang Institute of Automation. Three physicians were trained to operate the master robotics and performed gastroscopy on the simulation model based on network cloud. Each physician performed 3 procedures of oesophagogastroduodenoscopy (EGD) by YunSRobot using traditional manual endoscopy, on-site operating mode, and remote manipulation mode, respectively. The operating time, lumenal anatomic exposure,man-machine interaction and other parameters were recorded. Results The number of standard pictures obtained by traditional manual endoscopy group, on-site operating group and remote manipulation group were 39.9±0.3, 39.8±0.4, 39.9±0.3, respectively. The images of all five lesions could be obtained by each operation. The operating time in the duodenum of remote group was longer than that of on-site group, with average time (78.2±16.0)s vs. (68.9±15.8)s (P=0.021) respectively. As to the operating time on other parts or total time, all three groups were comparable. Although there was a mean delay of (572.1±48.5) ms in remote operation group, the operation was still smooth. However, compared with on-site group, the percentage of clear view time in the duodenum was significantly shortened in remote group: [(77.8±8.2)% vs. (83.9 ± 6.4)% , P=0.024]. Statistically significant difference was detected in percentage of clear view time neither in other sites, nor was in the total operating time between two groups. The operating time in each part of remote group was obviously longer than that of manual group as followings, pharyngeal (27.3±4.2) s vs. (9.2±1.3)s (P<0.001), esophageal (29.7±6.4)s vs. (19.3±1.6)s (P=0.004), stomach (56.7±17.0)s vs. (40.3±7.0)s (P=0.003), pylorus (20.2±5.5)s vs. (9.3±1.3)s (P<0.001), duodenum (78.2±16.0)s vs. (29.3±5.6)s (P<0.001). Thus the total operating time was also longer in remote group as (559.0±87.2)s vs. (253.1±16.6)s (P<0.001). The respective time in pharynx, esophagus, stomach, pylorus, duodenum, or the overall time was all longer in remote group than that in manual group. Conclusions The soft endoscopy robot YunSRobot has satisfactory safety and stability. Remote upper gastrointestinal endoscopy can be completed based on common network and an endoscope simulation model with smooth operation. The inspection time by YunSRobot robot per part and the overall time are longer than those of manual operation on site, still, remote operating time meets the standard of upper gastrointestinal endoscopy.
3.Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons.
Weiping PAN ; Xueyin HUANG ; Zikai YU ; Qiongqiong DING ; Liping XIA ; Jianfeng HUA ; Bokai GU ; Qisong XIONG ; Hualin YU ; Junbo WANG ; Zhenzhong XU ; Linghui ZENG ; Ge BAI ; Huaqing LIU
Neuroscience Bulletin 2023;39(5):745-758
Diabetic neuropathic pain (DNP) is the most common disabling complication of diabetes. Emerging evidence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area; however, the underlying molecular events remain poorly understood. Here we found that an axon guidance molecule, Netrin-3 (Ntn-3), was expressed in the sensory neurons of mouse dorsal root ganglia (DRGs), and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model. Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice. In contrast, the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice. In conclusion, our studies identified Ntn-3 as an important regulator of DNP pathogenesis by gating the aberrant sprouting of sensory axons, indicating that Ntn-3 is a potential druggable target for DNP treatment.
Mice
;
Animals
;
Diabetes Mellitus, Experimental/metabolism*
;
Axons/physiology*
;
Diabetic Neuropathies
;
Sensory Receptor Cells/metabolism*
;
Neuralgia/metabolism*