1.Construction and characterization of single-framework fully synthetic nanobody libraries.
Ying LUO ; Yanping LI ; Qinghua HE ; Zhui TU
Chinese Journal of Biotechnology 2025;41(4):1500-1514
This study is designed to address the development, synthesis, and screening of non-animal-derived nanoantibody libraries. Furthermore, it seeks to elucidate the impact of framework region selection and complementarity-determining region (CDR) design on the characteristics of synthesized nanoantibody libraries. These investigations aim to establish a robust theoretical and technical foundation for enhancing the efficacy, diversity, and practical applicability of synthetic nanoantibody libraries. In this study, a new framework (IGHV3S65*01-IGHJ4*01) was identified based on the high-throughput sequencing results of natural nanobodies, and degenerate primers were designed based on the frequency of amino acids at each position in the complementarity-determining region (CDR) region to synthesize the coding fragments of nanobodies by overlap PCR. After 40 times of electro-transformation, a single-frame synthesized nanobody library (SS-Library) containing 6×109 clones was obtained, and the titer of the library was demonstrated to be 1013 PFU/mL after rescue by the helper phage M13K07. Random 48 single colonies were picked for PCR, which revealed an insertion rate of 95.8%. Sanger sequencing results showed that 38 clones had complete sequences, none of which showed cysteines or stop codons, and no identical sequences appeared, suggesting that the library had higher diversity. The library was screened and validated with three antigens, including bovine serum albumin (BSA), acetylcholinesterase (AchE), and immunoglobulin G (IgG). Finally, 2 nanobodies against BSA, 10 against AchE, and 15 against IgG were obtained. One positive clone of each antigen was singled out for recombinant expression, and the results showed that all the three nanobodies were expressed in a soluble form. The binding activity of recombinantly expressed nanobodies was evaluated using indirect enzyme-linked immunosorbent assay (ELISA) and bio-layer interferometry (BLI). The results demonstrated that the anti-AChE and anti-IgG nanobodies exhibited specific binding to their respective antigens, with affinity constants (KD) of 294 nmol/L and 250 nmol/L, respectively. The nanobody synthetic library preparation method proposed in this study is simple and easy to use with low preference, and it is expected to be a universal nanobody discovery platform for the preparation and development of lead specific nanobodies.
Single-Domain Antibodies/biosynthesis*
;
Peptide Library
;
Complementarity Determining Regions/immunology*
;
Animals
2.Isolation and characterization of recombinant variable domain of heavy chain anti-idiotypic antibodies specific to aflatoxin B1.
Dan WANG ; Yang XU ; Zhui TU ; Jin Heng FU ; Yong Hua XIONG ; Fan FENG ; Yong TAO ; Da LEI ;
Biomedical and Environmental Sciences 2014;27(2):118-121
Some unique subclasses of Camelidae antibodies are devoid of the light chain, and the antigen binding site is comprised exclusively of the variable domain of the heavy chain (VHH). The recombinant VHHs have a high potential as alternative reagents for the next generation of immunoassay. In particular, they might be very useful for molecular mimicry. The present study demonstrated an alpaca immunized with the F(ab')2 fragment of anti-aflatoxin B1 mAb and developed an important anti-idiotypic (anti-Id) responses. Antigen-specific elution method was used for panning private anti-Id VHHs from the constructed alpaca VHH library. The selected VHHs were expressed, renatured, purified, and then identified by a competitive enzyme-linked immunosorbent assay (ELISA). Our findings indicated that the VHH would be an alternative tool for haptens mimicry studies.
Aflatoxin B1
;
immunology
;
Amino Acid Sequence
;
Animals
;
Antibodies, Anti-Idiotypic
;
biosynthesis
;
chemistry
;
isolation & purification
;
Camelids, New World
;
immunology
;
Immunoglobulin Heavy Chains
;
chemistry
;
isolation & purification
;
Molecular Sequence Data
3.Preparation of gene chip for detecting different expression genes involved in aflatoxin biosynthesis.
Chinese Journal of Preventive Medicine 2009;43(5):423-427
OBJECTIVETo develop the methodology of gene chip to analyse genes involved in aflatoxin biosynthesis.
METHODSIn comparing reversed transcriptional PCR with gene chip, the gene chip was used to detect genes involved in aflatoxin biosynthesis.
RESULTSAfter arrayed the slide was incubated in water for 2 hours, exposed to a 650 mJ/cm2 of ultraviolet irradiation in the strata-linker for 30 s, roasted under 80 degrees C for 2 hours in oven, pre-hybridized for 45 minutes and dealt with other procedures. Finally, the slide was hybridized with fluor-derivatized sample at 42 degrees C for 16 hours.
CONCLUSIONWith the reasonable probe design and applicable protocol, the gene chip was prepared effectively for research on genes involved in aflatoxin biosynthesis.
Aflatoxins ; biosynthesis ; Gene Expression Profiling ; Oligonucleotide Array Sequence Analysis ; methods

Result Analysis
Print
Save
E-mail