1.Epidural fibrous scar formation in rabbits following autologous ligamentum flavum intervention
Debao ZHANG ; Peng WANG ; Kun LI ; Shaojie ZHANG ; Zhijun LI ; Shuwen LI ; Yimin WU
Chinese Journal of Tissue Engineering Research 2025;29(6):1168-1175
BACKGROUND:It has been proved clinically that adhesion of fibrous scar with the dura mater or nerve root after lumbar operation is an important factor for postoperative symptoms,such as postoperative pain and numbness. OBJECTIVE:To verify the inhibitory effect of autologous ligamentum flavum on the formation of epidural fibrous scar after lumbar surgery and explore the possible molecular biological mechanism. METHODS:Forty-eight Japanese white rabbits(6-8 months old)were randomly divided into three groups:a ligamentum flavum preservation group,a ligamentum flavum non-preservation group,and an autologous fat reposition group.A lumbar laminectomy model was established in all the three groups of rabbits,and rabbit epidural tissues were collected at 3 and 6 weeks after modeling.Hematoxylin-eosin staining was used to observe histological changes and the number and density of fibroblasts,VG staining was used to observe the percentage of collagen fiber area,and immunohistochemistry was used to observe the expression of transforming growth factor β1 and Smad3 proteins. RESULTS AND CONCLUSION:Hematoxylin-eosin staining results revealed that fibroblasts in the ligamentum flavum preservation group were few and loosely arranged,while the cells in the ligamentum flavum non-preservation and autologous fat reposition groups were more numerous and closely arranged.The number density of fibroblasts in the ligamentum flavum preservation group was lower than that in the ligamentum flavum non-preservation and autologous fat reposition groups at 3 and 6 weeks after surgery(P<0.05);however,there was no significant difference between the latter two groups.VG staining results showed that the collagen fibers in the ligamentum flavum preservation group were sparse and distributed unevenly,while a lot of red collagen fibers were gathered in the ligamentum flavum non-preservation and autologous fat reposition groups.The area percentage of collagen fibers in the ligamentum flavum preservation group was lower than that in the ligamentum flavum non-preservation and autologous fat reposition groups at 3 and 6 weeks after surgery(P<0.05),but there was no significant difference between the latter two groups.The results of immunohistochemistry showed that the degree of positive staining of retained histone the ligamentum flavum preservation group was significantly lower than that of the other two groups.The absorbance value of transforming growth factor β1 and Smad3 in the ligamentum flavum preservation group was significantly lower than that in the other two groups at 3 and 6 weeks after surgery(P<0.05),but there was no significant difference between the latter two groups.To conclude,there are different degrees of epidural fibrous scar formation after lumbar surgery.If the ligamentum flavum is preserved,it can help to reduce the number of epidural fibroblasts as well as the formation of collagen fibers,thus reducing the adhesion of the fibrous scar tissue to the dural sac and nerve root.The mechanism is not only a purely mechanical blockade,but also to reduce the formation of epidural fibrous scar by interfering with the transforming growth factor β1/Smad3 signaling pathway.
2.Characteristic volatile organic compounds in exhaled breath of coal workers' pneumoconiosis patients by thermal desorption gas chromatography-mass spectrometry
Yazhen HE ; Chunguang DING ; Junyun WANG ; Yuzhen FENG ; Fangda PENG ; Gaisheng LIU ; Fan YANG ; Chunmin ZHANG ; Rui GAO ; Qingyu MENG ; Zhijun WU ; Jingguang FAN
Journal of Environmental and Occupational Medicine 2025;42(5):571-577
Background Coal workers' pneumoconiosis is a serious occupational disease in China. Exhaled volatile organic compounds (VOCs) can serve as the "breath fingerprint" of internal pathological processes, which provides a theoretical basis for exhaled VOCs to be used as potential non-invasive biomarkers for early diagnosis of coal workers' pneumoconiosis. Objective To screen out the characteristic VOCs and important characteristic VOCs of exhaled air in patients with coal workers' pneumoconiosis, and to explore the potential of these VOCs as biomarkers for early non-invasive diagnosis of the disease. Methods In this study, 27 VOCs in the exhaled breath of 22 patients with stage I coal workers' pneumoconiosis, 77 workers exposed to dust, and 92 healthy controls were quantitatively detected by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Substances with P<0.05 in univariate analysis and variable importance projection (VIP) >1 in supervised orthogonal partial least squares discriminant analysis (OPLS-DA) model were selected as the characteristic VOCs for early diagnosis of coal workers' pneumoconiosis. Age was included in the LASSO regression model as a covariate to screen out important characteristic VOCs, and the diagnostic performance was evaluated by receiver operating characteristic (ROC) curve. Spearman correlation was further used to explore the correlation between important characteristic VOCs and clinical lung function indicators. Results Through univariate analysis and OPLS-DA modeling, 8 VOCs were selected, including 2-methylpentane, 3-methylpentane, n-hexane, methylcyclopentane, n-heptane, methylcyclohexane, 4-methyl-2-pentanone, and 2-hexanone, in exhaled breath of patients with coal workers' pneumoconiosis. The concentrations of 4 VOCs, including 3-methylpentane, n-hexane, 4-methyl-2-pentanone, and 2-hexanone, showed a decreasing trend with the increase of dust exposure years. By LASSO regression, the important characteristic VOCs of the coal workers' pneumoconiosis group and the dust exposure group were n-hexane, methylcyclohexane and 4-methyl-2-pentanone, and the important characteristic VOCs of the coal workers' pneumoconiosis group and the healthy group were 2-methyl-pentane and 4-methyl-2-pentanone. The ROC analysis showed that the area under the curve (AUC) of n-hexane, methylcyclohexane, and 4-methyl-2-pentanone were 0.969, 0.909, and 0.956, respectively, and the AUC of combined diagnosis was 0.988 and its Youden index was 0.961, suggesting that these results can serve as a valuable reference for further research on early diagnosis. The Correlation analysis found that there was a positive correlation between n-hexane and lung function indicators in the important characteristic VOCs, indicating that it could indirectly reflect the obstruction of lung function ventilation, further proving that important characteristic VOCs have the potential to monitor lung function decline. Conclusion Three important characteristic VOCs selected in this study have the potential to be used as non-invasive biomarkers for early diagnosis and disease monitoring of coal workers' pneumoconiosis, and are worthy of further study and verification.
5.Effects of metformin on gut microbiota and short-/medium-chain fatty acids in high-fat diet rats.
Ying SHI ; Lin XING ; Shanyu WU ; Fangzhi YUE ; Tianqiong HE ; Jing ZHANG ; Lingxuan OUYANG ; Suisui GAO ; Dongmei ZHANG ; Zhijun ZHOU
Journal of Central South University(Medical Sciences) 2025;50(5):851-863
OBJECTIVES:
Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.
METHODS:
Twenty-four Sprague-Dawley rats were randomly divided into 3 groups: 1) Normal diet group (ND group), fed standard chow; 2) high-fat diet group (HFD group), fed a high-fat diet; 3) high-fat diet + metformin treatment group (HFD+Met group), fed a high-fat diet for 8 weeks, followed by daily intragastric administration of metformin solution (150 mg/kg body weight) starting in week 9. At the end of the experiment, all rats were sacrificed, and serum, liver, and colonic contents were collected for assessment of glucose and lipid metabolism, liver pathology, gut microbiota composition, and the concentrations of short-/medium-chain fatty acids.
RESULTS:
Metformin significantly improved HFD-induced glucose and lipid metabolic disorders and liver injury. Compared with the HFD group, the HFD+Met group showed reduced abundance of Blautia, Romboutsia, Bilophila, and Bacteroides, while Lactobacillus abundance significantly increased (all P<0.05). Colonic contents of butyric acid, 2-methyl butyric acid, valeric acid, octanoic acid, and lauric acid were significantly elevated (all P<0.05), whereas acetic acid, isoheptanoic acid, and nonanoic acid levels were significantly decreased (all P<0.05). Spearman correlation analysis revealed that Lactobacillus abundance was negatively correlated with body weight gain and insulin resistance, while butyrate and valerate levels were negatively correlated with insulin resistance and liver injury (all P<0.05).
CONCLUSIONS
Metformin significantly increases the abundance of beneficial bacteria such as Lactobacillus and promotes the production of short-/medium-chain fatty acids including butyric, valeric, and lauric acid in the colonic contents of HFD rats, suggesting that metformin may regulate host metabolism through modulation of the gut microbiota.
Animals
;
Metformin/pharmacology*
;
Rats, Sprague-Dawley
;
Diet, High-Fat/adverse effects*
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Fatty Acids, Volatile/metabolism*
;
Fatty Acids/metabolism*
6.Author Correction: LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2025;17(1):26-26
7.Mutational Signatures Analysis of Micropapillary Components and Exploration of ZNF469 Gene in Early-stage Lung Adenocarcinoma with Ground-glass Opacities.
Youtao XU ; Qinhong SUN ; Siwei WANG ; Hongyu ZHU ; Guozhang DONG ; Fanchen MENG ; Zhijun XIA ; Jing YOU ; Xiangru KONG ; Jintao WU ; Peng CHEN ; Fangwei YUAN ; Xinyu YU ; Jinfu JI ; Zhitong LI ; Pengcheng ZHU ; Yuxiang SUN ; Tongyan LIU ; Rong YIN ; Lin XU
Chinese Journal of Lung Cancer 2024;26(12):889-900
BACKGROUND:
In China, lung cancer remains the cancer with the highest incidence and mortality rate. Among early-stage lung adenocarcinomas (LUAD), the micropapillary (MPP) component is prevalent and typically exhibits high aggressiveness, significantly correlating with early metastasis, lymphatic infiltration, and reduced five-year survival rates. Therefore, the study is to explore the similarities and differences between MPP and non-micropapillary (non-MPP) components in malignant pulmonary nodules characterized by GGOs in early-stage LUAD, identify unique mutational features of the MPP component and analyze the relationship between the ZNF469 gene, a member of the zinc-finger protein family, and the prognosis of early-stage LUAD, as well as its correlation with immune infiltration.
METHODS:
A total of 31 malignant pulmonary nodules of LUAD were collected and dissected into paired MPP and non-MPP components using microdissection. Whole-exome sequencing (WES) was performed on the components of early-stage malignant pulmonary nodules. Mutational signatures analysis was conducted using R packages such as maftools, Nonnegative Matrix Factorization (NMF), and Sigminer to unveil the genomic mutational characteristics unique to MPP components in invasive LUAD compared to other tumor tissues. Furthermore, we explored the expression of the ZNF469 gene in LUAD using The Cancer Genome Atlas (TCGA) database to investigate its potential association with the prognosis. We also investigated gene interaction networks and signaling pathways related to ZNF469 in LUAD using the GeneMANIA database and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Lastly, we analyzed the correlation between ZNF469 gene expression and levels of immune cell infiltration in LUAD using the TIMER and TISIDB databases.
RESULTS:
MPP components exhibited a higher number of genomic variations, particularly the 13th COSMIC (Catalogue of Somatic Mutations in Cancer) mutational signature characterized by the activity of the cytidine deaminase APOBEC family, which was unique to MPP components compared to non-MPP components in tumor tissues. This suggests the potential involvement of APOBEC in the progression of MPP components in early-stage LUAD. Additionally, MPP samples with high similarity to APOBEC signature displayed a higher tumor mutational burden (TMB), indicating that these patients may be more likely to benefit from immunotherapy. The expression of ZNF469 was significantly upregulated in LUAD compared to normal tissue, and was associated with poor prognosis in LUAD patients (P<0.05). Gene interaction network analysis and GO/KEGG enrichment analysis revealed that COL6A1, COL1A1, COL1A2, TGFB2, MMP2, COL8A2 and C2CD4C interacted with ZNF469 and were mainly involved in encoding collagen proteins and participating in the constitution of extracellular matrix. ZNF469 expression was positively correlated with immune cell infiltration in LUAD (P<0.05).
CONCLUSIONS
The study has unveiled distinctive mutational signatures in the MPP components of early-stage invasive LUAD in the Asian population. Furthermore, we have identified that the elevated expression of mutated ZNF469 impacts the prognosis and immune infiltration in LUAD, suggesting its potential as a diagnostic and prognostic biomarker in LUAD.
Humans
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/genetics*
;
China
;
Prognosis
;
Transcription Factors
8.Establishment of high-throughput liquid chromatography tandem mass spectrometry method for determination of 53 per- and polyfluoroalkyl substances in serum
Zheng WANG ; Boya ZHANG ; Jiming ZHANG ; Chao FENG ; Yuanjie LIN ; Chunhua WU ; Dasheng LU ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2024;41(4):375-383
Background Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that possess potential toxicity to the human body. The production and utilization of diverse emerging PFAS have resulted in widespread human exposure. Therefore, it is imperative to establish a quantitative methodology encompassing a wide range of PFAS for a comprehensive assessment of human exposure to these compounds. Objective To establish a high-throughput quantitative method for the simultaneous determination of 53 PFAS in human serum based on ultra-high-performance liquid chromatography-Q Exactive high resolution mass spectrometry (UPLC-Q Exactive HRMS). Methods The extraction recoveries of hydrophilic-lipophilic balance (HLB) column, weak anionexchange (WAX) column, and 96-well WAX μElution plate were compared to select the SPE column with the highest recovery. The retention time and peak shape of the target compounds were compared between ACQUITY UPLC BEH C18 column and Accucore aQ column, and the more cost-effective column was chosen. The effects of adding different levels of ammonium formate (0, 2, 5 and 10 mmol·L−1) in mobile phase on peak shape and target response were compared to determine the optimal buffer salt concentration. The optimal spray voltage was obtained by comparing −2 kV and −4 kV. The proposed method was validated from the aspects of selectivity, standard curve, limits of detection, precision, accuracy, and matrix effect. The method was applied to 142 umbilical serum samples. Results The best recovery rate (64%-118%) was achieved by using 96-well WAX μElution plate. The optimal separation and peak shape were obtained by utilizing Accucore aQ column with H2O-methanol (containing 5 mmol·L−1 ammonium formate) as the mobile phase. Less in-source collision and better target response were observed when the spray voltage was set to −2 kV. All target analytes had a good linearity, with R2 > 0.99. The limits of detection ranged from 0.01 to 0.50 μg·L−1, and the recovery ranged from 69% to 127% with the precision less than 26%. A total of 31 PFAS were detected in the 142 actual samples, among which 14 PFAS had a detection frequency over 50%. Perfluorooctanoic acid showed the highest median concentration of 4.16 μg·L−1, followed by 6:2 chlorinated polyfluorinated ether sulfonate and perfluorooctane sulfonates (3.50 μg·L−1 and 1.59 μg·L−1, respectively). Conclusion In this study, we establish a UPLC-Q Excative HRMS method for simutanious determination of 53 PFAS concentrations in serum. This method has the advantages of wide coverage of PFAS, good selectivity, and easy operation, and is suitable for biological detection with a large sample size.
9.Effectss of persistent obesity on lung function in school age children
Chinese Journal of School Health 2024;45(4):549-553
Objective:
To analyze the impact of persistent obesity on their lung function, so as to offer insights for implementing intervention measures to increase lung function in obese school age children.
Methods:
A total of 335 children from the Sheyang Mini Birth Cohort established in 2009 in Yancheng City, Jiangsu Province, who participated in the follow up at the ages of 7 years (2016) and 10 years (2019), were selected as the study participants. Physical measurements including height, weight, and lung function were recorded. According to the World Health Organization standard, that is, gender and age specific to correct the body mass index to calculate the body mass index Z score, was used to evaluate the obesity status of children at the age of 7 and 10. Children were divided into four groups, including sustained non obesity group, restored obesity group, newly classified obesity group, and persistent obesity group. Meanwhile, the lung function prediction equations recommended by the Global Lung Function Initiative were used to standardize the lung function indexes of children. Pulmonary function differences among these groups were examined, and the relationship between childhood obesity and pulmonary function was longitudinally analyzed using generalized estimating equations.
Results:
The prevalence of obesity were 9.0% and 16.1% at the age of 7 and 10 years, respectively. The proportion of both newly classified and persistent obesity group were 8.1%, respectively. The forced expiratory volume in one second (FEV 1) and forced vital capacity (FVC) were (1 269.90±202.70) and (1 415.70±230.00) mL, respectively, at the age of 7 years. FEV 1 and FVC at the age of 10 years were (1 440.80±403.20) and (1 555.60±517.60) mL, respectively. Cross sectional analysis at age 7 showed that forced expiratory flow at 75% vital capacity (FEF 75 ) ( β=-0.52, 95%CI =-0.96--0.07) and maximal mid expiratary flow (MMEF) ( β=-0.45, 95%CI =-0.89--0.00) were significantly lower in obese children compared to their non obese peers ( P < 0.05). Longitudinal analysis indicated that obese children had lower levels of lung pulmonary function, with a statistically significant difference in FEV 1 ( β=-0.44, 95%CI=-0.85--0.02, P <0.05). There was no significant difference among the various obesity groups ( P >0.05), while gender stratified results revealed significant reductions in FEV 1/FVC in newly classified obese girls at age 10 years ( β=-1.76, 95%CI =-3.13--0.38) and in MMEF in persistently obese girls at age 10 years ( β=-1.44, 95%CI = -2.79- -0.09) ( P <0.05).
Conclusion
Obesity may contribute to reduced lung function levels in school aged children, with newly classified and persistent obesity having more pronounced effects on lung function in girls.
10.Research progress on collection and analysis methods of exhaled volatile organic compounds
Yazhen HE ; Rui GAO ; Zhijun WU ; Jingguang FAN ; Chunguang DING
Journal of Environmental and Occupational Medicine 2024;41(6):707-712
The composition and concentration of volatile organic compounds (VOCs) in exhaled breath are closely related to human health and the analysis of VOCs by collecting human exhaled breath has been widely used in disease surveillance research. This article reviewed the collection, enrichment, and detection methods of exhaled VOCs, which can provide a reference for selecting appropriate technology for follow-up research. The exhaled breath collection devices mainly include sampling bags for mixed exhaled breath and biological volatile organic compound (Bio-VOC) samplers for alveolar air. The pre-enrichment equipment included thermal desorption (TD), solid-phase microextraction device (SPME), and needle trap device (NTD). The detection methods of exhaled VOCs include gas chromatography-mass spectrometry (GC-MS), proton transfer reaction mass spectrometry (PTR-MS), selective ion flow tube mass spectrometry (SIFT-MS), and electronic nose. At present, the collection and enrichment technology of exhaled breath is not mature yet, and its influence on the results of detection is lack of evaluation. In the future, the research on collection and enrichment technology of exhaled breath should be strengthened to further promote the application of exhaled breath in disease surveillance research.


Result Analysis
Print
Save
E-mail