1.Mechanism of Wendantang in Intervention of ApoE-/- Hyperlipidemic Mice Based on Liver Metabolomics
Yun ZHOU ; Songren YU ; Lu ZHANG ; Wenting LIN ; Keming YU ; Min XIA ; Zhijun ZENG ; Yanhua JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):1-9
ObjectiveTo explore the mechanism of action of Wendantang on ApoE-/- hyperlipidemic mice using non-targeted metabolomics technology. MethodsMale C57BL/6J mice served as the normal control group (n=6), and they were fed with regular chow, while male ApoE-/- mice constituted the high-fat group (n=30), and they were fed with a 60% high-fat diet. After 11 weeks of model establishment, the mice in the high-fat group were randomly divided into the model group, simvastatin group (3.3 mg·kg-1), and high-dose, medium-dose, and low-dose groups of Wendantang (26, 13, 6.5 g·kg-1, respectively, in terms of crude drug amount), with six mice in each group. The normal control group and the model group were gavaged with an equivalent volume of normal saline, and all groups continued to be fed their respective diets, receiving daily medication for 10 weeks with weekly body weight measurements. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), free fatty acids (NEFA), blood glucose (GLU), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were detected in the mice. Pathological changes in liver tissue were observed using hematoxylin-eosin (HE) staining, and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was employed for metabolomic analysis of mouse liver tissue. ResultsCompared to the normal control group, the model group exhibited significantly increased body weight, blood lipid levels, and liver function (P<0.05, P<0.01), with disordered liver tissue structure, swollen hepatocytes, and accompanying vacuolar fatty degeneration and inflammatory cell infiltration. Compared to the model group, the simvastatin group and Wendantang groups showed significantly reduced body weight, TG, NEFA, GLU, ALT, and AST levels (P<0.05, P<0.01), with a significant increase in HDL-C levels (P<0.05, P<0.01), demonstrating a dose-dependent effect. The lesion of the liver tissue section was obviously improved after administration, tending towards a normal liver tissue morphology. Analysis of liver metabolites revealed 86 differential metabolites between the normal control group and the model group, with the high-dose group of Wendantang able to regulate 56 of these metabolites. Twenty-two differential metabolites associated with hyperlipidemia were identified, mainly including chenodeoxycholic acid, hyocholic acid, taurine, glycocholic acid, dihydroceramide, hydroxy sphingomyelin C14∶1, arachidonic acid, and linoleic acid, enriching 22 metabolic pathways, with 4 being the most significant (P<0.05), namely primary bile acid biosynthesis, sphingolipid metabolism, unsaturated fatty acid biosynthesis, and linoleic acid metabolism pathways. ConclusionWendantang can improve blood lipid levels and liver function in ApoE-/- hyperlipidemic mice, which may be related to the regulation of primary bile acid biosynthesis, sphingolipid metabolism, unsaturated fatty acid biosynthesis, and linoleic acid metabolism pathways.
2.Effects of metformin on gut microbiota and short-/medium-chain fatty acids in high-fat diet rats.
Ying SHI ; Lin XING ; Shanyu WU ; Fangzhi YUE ; Tianqiong HE ; Jing ZHANG ; Lingxuan OUYANG ; Suisui GAO ; Dongmei ZHANG ; Zhijun ZHOU
Journal of Central South University(Medical Sciences) 2025;50(5):851-863
OBJECTIVES:
Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.
METHODS:
Twenty-four Sprague-Dawley rats were randomly divided into 3 groups: 1) Normal diet group (ND group), fed standard chow; 2) high-fat diet group (HFD group), fed a high-fat diet; 3) high-fat diet + metformin treatment group (HFD+Met group), fed a high-fat diet for 8 weeks, followed by daily intragastric administration of metformin solution (150 mg/kg body weight) starting in week 9. At the end of the experiment, all rats were sacrificed, and serum, liver, and colonic contents were collected for assessment of glucose and lipid metabolism, liver pathology, gut microbiota composition, and the concentrations of short-/medium-chain fatty acids.
RESULTS:
Metformin significantly improved HFD-induced glucose and lipid metabolic disorders and liver injury. Compared with the HFD group, the HFD+Met group showed reduced abundance of Blautia, Romboutsia, Bilophila, and Bacteroides, while Lactobacillus abundance significantly increased (all P<0.05). Colonic contents of butyric acid, 2-methyl butyric acid, valeric acid, octanoic acid, and lauric acid were significantly elevated (all P<0.05), whereas acetic acid, isoheptanoic acid, and nonanoic acid levels were significantly decreased (all P<0.05). Spearman correlation analysis revealed that Lactobacillus abundance was negatively correlated with body weight gain and insulin resistance, while butyrate and valerate levels were negatively correlated with insulin resistance and liver injury (all P<0.05).
CONCLUSIONS
Metformin significantly increases the abundance of beneficial bacteria such as Lactobacillus and promotes the production of short-/medium-chain fatty acids including butyric, valeric, and lauric acid in the colonic contents of HFD rats, suggesting that metformin may regulate host metabolism through modulation of the gut microbiota.
Animals
;
Metformin/pharmacology*
;
Rats, Sprague-Dawley
;
Diet, High-Fat/adverse effects*
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Fatty Acids, Volatile/metabolism*
;
Fatty Acids/metabolism*
3.Comparative study on the mechanism and efficacy of Zexie tang traditional decoction and formula granules in reducing lipid accumulation
Yuanyuan GUO ; Lina MA ; Huqin LIN ; Changhui ZHENG ; Jiayi LI ; Zhijun LI ; Junling CAO
China Pharmacy 2025;36(10):1202-1208
OBJECTIVE To explore the effect and mechanism of Zexie tang (ZXT) on reducing lipid accumulation through network pharmacology, and compare the difference of traditional decoction versus formula granules. METHODS The active components and targets of ZXT were identified using TCMSP and SwissTargetPrediction databases. GeneCards, OMIM, DisGeNET and TTD databases were used to analyze the related targets of non-alcoholic fatty liver disease (NAFLD); protein-protein interaction network model was constructed by String database;“ ZXT-NAFLD target-pathway” network diagram was constructed by using CytoScape software; target enrichment analysis was performed by using Metascape platform. Fat accumulation model of human hepatocellular carcinoma HepG2 cells was established to observe the effects of traditional decoction and formula granules of ZXT on lipid accumulation of cells. RESULTS Alisol B, alisol C, 1-monolinolein and alisol B monoacetate were the key active components of ZXT in the treatment of NAFLD. The core targets included MDM2, MAPK1, PIK3CB, PRKCQ and MAPK14, etc. The core signaling pathways included endocrine resistance, insulin resistance and Th17 cell differentiation. Compared with model group, except for the Zexie formula granules group and Baizhu formula granules group, the absorbance values in all other administration groups were significantly decreased (P<0.01); the absorbance value of Baizhu traditional decoction group was significantly higher than that of ZXT traditional decoction group (P<0.01); the absorbance values of Zexie formula granule group and Baizhu formula granule group were significantly higher than that of ZXT formula granule group (P<0.01); the absorbance value of Zexie formula granule group was significantly higher than that of Zexie traditional decoction group (P<0.01); the absorbance value of Baizhu formula granule group was significantly higher than that of Baizhu traditional decoction group (P<0.01). CONCLUSIONS ZXT reduces lipid accumulation of human hepatocellular carcinoma cells through multiple components, multiple target and multiple pathways, and its traditional decoction and formula granules exhibit slightly different lipid-lowering effects.
4.Identification of unknown pollutants in drinking water based on solid-phase extraction and supramolecular solvent extraction
Zixin QIAN ; Yuhang CHEN ; Chao FENG ; Yuanjie LIN ; Qian XU ; Ziwei LIANG ; Xinyu WANG ; Dasheng LU ; Ping XIAO ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2025;42(7):854-861
Background With the progression of industrialization, an increasing number of emerging contaminants are entering aquatic environments, posing significant threats to the safety of drinking water. Therefore, establishing a system for identifying unknown hazardous factors and implementing safety warning mechanisms for drinking water is of paramount importance. Among these efforts, non-target screening plays a critical role, but its effectiveness is largely constrained by the scope of coverage of sample pre-treatment methods. Objective To integrate modern chromatography/mass spectrometry techniques with advanced data mining methods to develop a non-discriminatory sample pre-treatment method for comprehensive enrichment of unknown contaminants in drinking water, laying a technical foundation for the discovery and identification of unknown organic hazardous factors in drinking water. Methods A non-discriminatory pre-treatment method based on supramolecular and solid-phase extraction was developed. The final target compounds including 333 pesticides, 194 pharmaceuticals and personal care products (PPCPs), and 59 per- and polyfluoroalkyl substances (PFASs) were used for optimizing the pre-treatment method, confirming its coverage. The impacts of different eluents on the absolute recovery rates of target compounds were compared to select the conditions with the highest recovery for sample pre-treatment. The effects of different supramolecular solvents and salt concentrations on target compound recovery were also evaluated to determine the most suitable solvent and salt concentration. Results The solid-phase extraction elution solvents, supramolecular extraction solvents, and salt concentrations were optimized based on the target compound recovery rates. The optimal recovery conditions were achieved using 2 mL methanol, 2 mL methanol (containing 1% formic acid), 2 mL ethyl acetate, 2 mL dichloromethane, hexanediol supramolecular solvent, and 426 mg salt. The detection method developed based on these conditions showed a good linear relationship for all target compounds in the range of 0.1-100.0 ng·mL−1, with R² > 0.99. The method’s limit of detection ranged from 0.01 ng−1 to 0.95 ng−1, and 95% of target compounds were recovered in the range of 20%-120%, with relative standard deviation (RSD) less than 30%, indicating good precision. Conclusion The combined pre-treatment method of solid-phase extraction and supramolecular solvent extraction can effectively enrich contaminants in drinking water across low, medium, and high polarities, enabling broad-spectrum enrichment of diverse trace contaminants in drinking water. It provides technical support for broad-spectrum, high-throughput screening and identification of organic pollutants in drinking water, and also serves as a reference for establishing urban drinking water public safety warning systems.
6.Ecliptasaponin A ameliorates DSS-induced colitis in mice by suppressing M1 macrophage polarization via inhibiting the JAK2/STAT3 pathway.
Minzhu NIU ; Lixia YIN ; Tong QIAO ; Lin YIN ; Keni ZHANG ; Jianguo HU ; Chuanwang SONG ; Zhijun GENG ; Jing LI
Journal of Southern Medical University 2025;45(6):1297-1306
OBJECTIVES:
To investigate the effect of ecliptasaponin A (ESA) for alleviating dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice and the underlying mechanism.
METHODS:
Twenty-four male C57BL/6 mice (8-10 weeks old) were equally randomized into control group, DSS-induced IBD model group, and DSS+ESA (50 mg/kg) treatment group. Disease activity index (DAI), colon length and spleen index of the mice were measured, and intestinal pathology was examined with HE staining. The expressions of inflammatory mediators (TNF-α, IL-6, and iNOS) in the colon mucosa were detected using ELISA and RT-qPCR, and intestinal barrier integrity was assessed using AB-PAS staining and by detecting ZO-1 and claudin-1 expressions using immunofluorescence staining and Western blotting. In cultured RAW264.7 macrophages, the effects of treatment with 50 μmol/L ESA, alone or in combination with 20 μmol/L RO8191 (a JAK2/STAT3 pathway activator), on M1 polarization of the cells induced by LPS and IFN-γ stimulation and expressions of JAK2/STAT3 pathway proteins were analyzed using flow cytometry and Western blotting.
RESULTS:
In the mouse models of DSS-induced IBD, ESA treatment significantly alleviated body weight loss and colon shortening, reduced DAI, spleen index and histological scores, and ameliorated inflammatory cell infiltration in the colon tissue. ESA treatment also suppressed TNF‑α, IL-6 and iNOS expressions, protected the goblet cells and the integrity of the mucus and mechanical barriers, and upregulated the expressions of ZO-1 and claudin-1. ESA treatment obviously decreased CD86+ M1 polarization in the mesenteric lymph nodes of IBD mice and in LPS and IFN-γ-induced RAW264.7 cells, and significantly reduced p-JAK2 and p-STAT3 expressions in both the mouse models and RAW264.7 cells. Treatment with RO8191 caused reactivation of JAK2/STAT3 and strongly attenuated the inhibitory effect of ESA on CD86+ polarization in RAW264.7 cells.
CONCLUSIONS
ESA alleviates DSS-induced colitis in mice by suppressing JAK2/STAT3-mediated M1 macrophage polarization and mitigating inflammation-driven intestinal barrier damage.
Animals
;
Mice
;
Janus Kinase 2/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Dextran Sulfate
;
Macrophages/cytology*
;
Colitis/metabolism*
;
Saponins/pharmacology*
;
Signal Transduction/drug effects*
;
RAW 264.7 Cells
;
Triterpenes/pharmacology*
;
Interleukin-6/metabolism*
7.Pinostrobin targets the PI3K/AKT/CCL2 axis in intestinal epithelial cells to inhibit intestinal macrophage infiltration and alleviate dextran sulfate sodium-induced colitis in mice.
Keni ZHANG ; Tong QIAO ; Lin YIN ; Ju HUANG ; Zhijun GENG ; Lugen ZUO ; Jianguo HU ; Jing LI
Journal of Southern Medical University 2025;45(10):2199-2209
OBJECTIVES:
To investigate the mechanism through which pinostrobin (PSB) alleviates dextran sulfate sodium (DSS)-induced colitis in mice.
METHODS:
C57BL/6 mice were randomized into control group, DSS model group, and PSB intervention (30, 60, and 120 mg/kg) groups. Colitis severity of the mice was assessed by examining body weight changes, disease activity index (DAI), colon length, and histopathology. The expressions of tight junction proteins ZO-1 and claudin-1 in the colon tissues were examined using immunofluorescence staining, and macrophage infiltration and polarization were analyzed with flow cytometry. ELISA and RT-qPCR were used for detecting the expressions of inflammatory factors (TNF‑α and IL-6) and chemokines (CCL2, CXCL10, and CX3CL1) in the colon tissues, and PI3K/AKT phosphorylation levels were analyzed with Western blotting. In cultured Caco-2 and RAW264.7 cells, the effect of PSB on CCL2-mediated macrophage migration was assessed using Transwell assay. Network pharmacology analysis was performed to predict the key pathways that mediate the therapeutic effect of PSB.
RESULTS:
In DSS-induced mouse models, PSB at 60 mg/kg optimally alleviated colitis, shown by reduced weight loss and DAI scores and increased colon length. PSB treatment significantly upregulated ZO-1 and claudin-1 expressions in the colon tissues, inhibited colonic macrophage infiltration, and promoted the shift of macrophage polarization from M1 to M2 type. In cultured intestinal epithelial cells, PSB significantly inhibited PI3K/AKT phosphorylation and suppressed chemokine CCL2 expression. PSB treatment obviously blocked CCL2-mediated macrophage migration of RAW264.7 cells, which could be reversed by exogenous CCL2. Network pharmacology analysis and rescue experiments confirmed PI3K/AKT and CCL2 signaling as the core targets of PSB.
CONCLUSIONS
PSB alleviates DSS-induced colitis in mice by targeting intestinal epithelial PI3K/AKT signaling, reducing CCL2 secretion, and blocking macrophage chemotaxis and migration, highlighting the potential of PSB as a novel natural compound for treatment of inflammatory bowel disease.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Colitis/drug therapy*
;
Dextran Sulfate
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Macrophages
;
Chemokine CCL2/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Caco-2 Cells
;
RAW 264.7 Cells
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/metabolism*
8.Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women.
Xi CHENG ; Lei LI ; Xijuan LIN ; Na CHEN ; Xudong LIU ; Yaqian LI ; Zhaoai LI ; Jian GONG ; Qing LIU ; Yuling WANG ; Juntao WANG ; Zhijun XIA ; Yongxian LU ; Hangmei JIN ; Xiaowei ZHANG ; Luwen WANG ; Juan CHEN ; Guorong FAN ; Shan DENG ; Sen ZHAO ; Lan ZHU
Frontiers of Medicine 2025;19(4):665-674
Pelvic organ prolapse (POP), whose etiology is influenced by genetic and clinical risk factors, considerably impacts women's quality of life. However, the genetic underpinnings in non-European populations and comprehensive risk models integrating genetic and clinical factors remain underexplored. This study constructed the first polygenic risk score (PRS) for POP in the Chinese population by utilizing 20 disease-associated variants from the largest existing genome-wide association study. We analyzed a discovery cohort of 576 cases and 623 controls and a validation cohort of 264 cases and 200 controls. Results showed that the case group exhibited a significantly higher PRS than the control group. Moreover, the odds ratio of the top 10% risk group was 2.6 times higher than that of the bottom 10%. A high PRS was significantly correlated with POP occurrence in women older than 50 years old and in those with one or no childbirths. As far as we know, the integrated prediction model, which combined PRS and clinical risk factors, demonstrated better predictive accuracy than other existing PRS models. This combined risk assessment model serves as a robust tool for POP risk prediction and stratification, thereby offering insights into individualized preventive measures and treatment strategies in future clinical practice.
Humans
;
Female
;
Pelvic Organ Prolapse/epidemiology*
;
Middle Aged
;
Risk Assessment/methods*
;
China/epidemiology*
;
Multifactorial Inheritance
;
Aged
;
Risk Factors
;
Genome-Wide Association Study
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Adult
;
Polymorphism, Single Nucleotide
;
Genetic Risk Score
;
East Asian People
9.Mutational Signatures Analysis of Micropapillary Components and Exploration of ZNF469 Gene in Early-stage Lung Adenocarcinoma with Ground-glass Opacities.
Youtao XU ; Qinhong SUN ; Siwei WANG ; Hongyu ZHU ; Guozhang DONG ; Fanchen MENG ; Zhijun XIA ; Jing YOU ; Xiangru KONG ; Jintao WU ; Peng CHEN ; Fangwei YUAN ; Xinyu YU ; Jinfu JI ; Zhitong LI ; Pengcheng ZHU ; Yuxiang SUN ; Tongyan LIU ; Rong YIN ; Lin XU
Chinese Journal of Lung Cancer 2024;26(12):889-900
BACKGROUND:
In China, lung cancer remains the cancer with the highest incidence and mortality rate. Among early-stage lung adenocarcinomas (LUAD), the micropapillary (MPP) component is prevalent and typically exhibits high aggressiveness, significantly correlating with early metastasis, lymphatic infiltration, and reduced five-year survival rates. Therefore, the study is to explore the similarities and differences between MPP and non-micropapillary (non-MPP) components in malignant pulmonary nodules characterized by GGOs in early-stage LUAD, identify unique mutational features of the MPP component and analyze the relationship between the ZNF469 gene, a member of the zinc-finger protein family, and the prognosis of early-stage LUAD, as well as its correlation with immune infiltration.
METHODS:
A total of 31 malignant pulmonary nodules of LUAD were collected and dissected into paired MPP and non-MPP components using microdissection. Whole-exome sequencing (WES) was performed on the components of early-stage malignant pulmonary nodules. Mutational signatures analysis was conducted using R packages such as maftools, Nonnegative Matrix Factorization (NMF), and Sigminer to unveil the genomic mutational characteristics unique to MPP components in invasive LUAD compared to other tumor tissues. Furthermore, we explored the expression of the ZNF469 gene in LUAD using The Cancer Genome Atlas (TCGA) database to investigate its potential association with the prognosis. We also investigated gene interaction networks and signaling pathways related to ZNF469 in LUAD using the GeneMANIA database and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Lastly, we analyzed the correlation between ZNF469 gene expression and levels of immune cell infiltration in LUAD using the TIMER and TISIDB databases.
RESULTS:
MPP components exhibited a higher number of genomic variations, particularly the 13th COSMIC (Catalogue of Somatic Mutations in Cancer) mutational signature characterized by the activity of the cytidine deaminase APOBEC family, which was unique to MPP components compared to non-MPP components in tumor tissues. This suggests the potential involvement of APOBEC in the progression of MPP components in early-stage LUAD. Additionally, MPP samples with high similarity to APOBEC signature displayed a higher tumor mutational burden (TMB), indicating that these patients may be more likely to benefit from immunotherapy. The expression of ZNF469 was significantly upregulated in LUAD compared to normal tissue, and was associated with poor prognosis in LUAD patients (P<0.05). Gene interaction network analysis and GO/KEGG enrichment analysis revealed that COL6A1, COL1A1, COL1A2, TGFB2, MMP2, COL8A2 and C2CD4C interacted with ZNF469 and were mainly involved in encoding collagen proteins and participating in the constitution of extracellular matrix. ZNF469 expression was positively correlated with immune cell infiltration in LUAD (P<0.05).
CONCLUSIONS
The study has unveiled distinctive mutational signatures in the MPP components of early-stage invasive LUAD in the Asian population. Furthermore, we have identified that the elevated expression of mutated ZNF469 impacts the prognosis and immune infiltration in LUAD, suggesting its potential as a diagnostic and prognostic biomarker in LUAD.
Humans
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/genetics*
;
China
;
Prognosis
;
Transcription Factors
10.Mechanism Evolution of Latent Toxin in Systemic Lupus Erythematosus and Syndrome Differentiation and Treatment
Yi ZHANG ; Zhijun XIE ; Lin HUANG ; Qiao WANG ; Haichang LI ; Chengping WEN
Journal of Traditional Chinese Medicine 2024;65(16):1721-1724
It is proposed that the disease mechanism evolution of systemic lupus erythematosus can be summarized into four stages: initial invasion and latency, the pathogenesis remains concealing; latent toxin accumulation, the disease gradually becomes apparent; active toxin begins damaging, the disease manifests aggressively; damage resulting to deficiency, the disease course prolonged. Based on the stages of latent toxin evolution, the syndrome differentiation and treatment of systemic lupus erythematosus can be summarized as follows: during the initial latent stage, characterized by latent dampness and heat stagnation, modified Sanren Decoction (三仁汤) should be used; in the toxin outbreak stage, marked by intense heat toxin, modified Xijiao Dihuang Decoction (犀角地黄汤) combined with modified Qingwen Baidu Decoction (清瘟败毒饮) should be used; during the toxin damage stage, which presents as latent toxin damaging zang-fu organs, modified Qinghao Biejia Decoction (青蒿鳖甲汤) should be used; in the healthy qi deficiency stage, characterized by deficiencies of qi, blood, yin, and yang, modified Xieli Shiquan Ointment (燮理十全膏) should be used.

Result Analysis
Print
Save
E-mail